
AD-RI92 723 CONSTRUCTING A HIGHLY AVAILABLE LOCATION SERVICE FOR A i/I
DISTRIBUTED ENVIRO..(U) MASSACHUSETTS INST OF TECH
CAMBRIDGE LBRD COMPUTER SCIENCE. D J HWANG JAN 99

7UNCLASSIFIED MIT/LCS/TR-416 NBBBI483 IC B125 F/G 2/7 H

IK .2Ih EMhhMEN
sohhhhhhhhhsoI

MEEMONEEhE

m

~i-

_IN l I II1JIi
1

I
'

_

11111

.4k

- ~ *'N'~~K ~,% A~"v ,

Unclassified
1ECURITY CLASSIFICATION OF THIS PAGE

+ IEt OCUMENTATON PAGE
la. REPORT SECURITY CLASSIFICAT E LECT E lb RESTRICTIVE MARKINGS

Unclafiedd Aproe frpulcelae;dstiuto
2a. SECURITY CLASSIFICATION AUI.ITY MAR 0 3 1988 3 -DISTRIBUTION/ AVAILABILITY OF REPORT

2b"ELSIIAIO ON HDL Approved for public release; distribution

2b. DECLASSFICATION/DOWNG WCHEDULE is unlimited.

4. PERFORMING ORGANIZATJ6N REPORT NUMBER(H S MONITORING ORGANIZATION REPORT NUMBER(S)
MIT/LCS/TR-410 V N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

MIT Laboratory for Computer (If aplticable) Office of Naval Research/Dept. of Navy

Science I--

6c. ADDRESS (City. State, and ZIP Code) 7b. ADDRESS (City, State. and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

Ba. NAME OF FUNDINGISPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION If applicable)

DARPA/DOD I

k. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT

Arlington, VA 22209 ELEMENT NO. NO. NO ACCESSION NO.

11. TITLE (bslde Security Classification)

CONSTRUCTING A HIGHLY-AVAILABLE LOCATION SERVICE FOR A DISTRIBUTED ENVIRONMENT

12. PERSONAL AUTHOR(S)
Hwang. Deborah Jin-Hwa

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATESOF REPORT (Vear,MonthDay) 15 PAGE COUNT
Technic FROM TO1988 January 86

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neessary and identify by block number)

FIELD GROUP SUB-GROUP distributed systems, highly-available, location service,

multipart timestamps, reconfiguration, replacement,

replication
19. ABSTRACT (Continue on reverse if necessry and identify by block number)

-- "P- One possible advantage a distributed system has over a centralized system is the

ability to move objects from one node to another. For example, we may want to move an

object if the node where it resides is overloaded. This thesis proposes to use a location

service to aid in finding objects that move. The service is highlyiavailable; it will"-

tolerate system failures like node crashes and network partitions without shutting down

completely. The service is also efficient; the response time of the service is reason-

able, and it does not increase the number and sizes of messages excessively.

We achieve high availablity and efficiency by replicating the service
state. The

replication technique we have chosen is a new method, the multipart timestamp
technique

that is based on multipart timestamps and gossip messages. This technique provides us

with higher availability and efficiency than traditional replication techniques without

sacrificing consistency. We also extend this technique to allow reconfiguration.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
] UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT 0 OTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 12b TELEPHONE (Include Area Code) 22c OFFICE SYMBOL

Judy Little, Publications Coordinator (617) 253-5894

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*uS Gwnmmm ftwolm om : sl-w-e4

Unclassified

I •.

I ,",-

Constructing a Highly-Available Location
Service for a Distributed Environment

byr

Deborah Jing-Hwa Hwang

November 1987

0 Massachusetts Institute of Technology, 1987

This research was supported by an Office of Naval Research Graduate Fellowship, and
In pert by the Advanced Research Projects Agency of the Department of Defense,
monitored by the Office Naval Research under contract N00014-83-K-0125 and the 0

National Science Foundation under grant DCR-8503662.

Massachusetts Institute of Technology
Laboratory for Computer Science
Cambridge, Massachusetts 02139

Constructing a Highly-Available Location

Service for a Distributed Environment

by

Deborah Jing-Hwa Hwang

Submitted to the
Department of Electrical Engineering and Computer Science

on November 18, 1987, In partial fulfillment of the requirements
for the Degree of Master of Science

Abstract

One possible advantage a distributed system has over a centralized system is the ability
to move objects from one node to another. For example, we may want to move an
object If the node where It resides is overloaded. This thesis proposes to use a location
service to aid in finding objects that move. The service is highly-available it will tolerate
system failures Ike node crashes and network partitions without shutting down
completely. The service Is also efficient;, the response time of the service is reasonable,
and it does not Increase the number and sizes of messages excessively.

We achieve high availability and efficiency by replicating the service state. The
replication technique we have chosen is a new method, the mu/tipart timestamp
technique that is based on mu/tipart timestamps and gossip messages. This technique
provides us with higher availability and efficiency than traditional replication techniques
without sacrificing consistency. We also extend this technique to allow reconfiguration.

S

Thesis Supervisor: Barbara H. Uskov
Title: NEC Professor of Software Science and Engineering

Keywords: distributed systems, highly-available, location service, multipart timestamps,
reconfiguratlon, replacement, replication

2

Acknowledgments

First I thank my advisor, Barbara Uskov, for suggesting this Interesting topic and
providing me with guidance In formulating and organizing the ideas in this thesis. I also
thank the Office of Naval Research for their generous support.

I thank the members of the Programming Methodology, Theory of Distributed Systems,
and Systematic Program Development groups for their support and encouragement. In
particular, I thank my officemate, Brian Old, for many enlightening discussions, technical
or otherwise, and Gary Leavens for many helpful comments on this thesis. Paul
Johnson and Dorothy Curtis get special thanks for keeping the Argus system running
and answering my many questions about the system.

I thank my parents and my sisters, Bess and Amy. I could not ask for a family that
provided more support and encouragement for my endeavors. They have all my love
and respect

I thank the Ashdown House community for their warmth and friendship. I especially
want to thank Wil Howltt (the "lncorrgible Punster) for being a wonderful friend; Kathryn
Hess for being a great friend and co-conspirator, Mike Ciholas for sharing his unique
outlook on ife; and those crazy Canadians, Michael Corvin and Donald Russell, for
making me laugh when I least expected It and most needed It. They have made being
here much more pleasant as well as adventurous.

Finally, I thank my old and dear friends from Iowa State who kept me crazy all those
years and still try their best even now. Special thanks go to Susan Clarke for being the
best friend I've ever had; Fred Weiser for just being himself; and Della Leonard for giving
me a place to go when I wanted to get away (especially at Thanksgiving).

SAoession For

NTIS GRA&I
DTIC TAB C3" Unannounced 03

%; Justification

Dist ribution/

I Availability Codel

Avail and/or
3 Dist Speolal

er

Table of Contents

-sb

Chapter One: Introduction 7

Chapter Two: Background 10

2.1 Model of computation 10
2.2 Argus 10

2.2.1 Guardians and handlers 11
2.2.2 Atomic actions and atomic objects 12
2.2.3 Mutex objects 12
2.2.4 System implementation 13

2.3 Moving objects in Argus 13

Chapter Three: A Highly-Available Location Service 16

3.1 Multipart timestamp technique 17
3.2 Operations of the location service 19

3.2.1 SpecIfications 19
3.2.2 An example 23

3.3 Abstract implementation 26
3.3.1 Data structures 26
3.3.2 Operations 28
3.3.3 Gossip 30
3.3.4 Garbage collection 32
3.3.5 Replca recovery 33

3.4 Clients of the location service 35
3.4.1 Guardian manager 35
3.4.2 Replacement system 36
3.4.3 Regular guardians 37
3.4.4 Discussion 38

3.5 Summary 39

Chapter Four: Implementing the Location Service in Argus 40

4.1 Serial solution 42
4.1.1 Data structures 43 0
4.1.2 Replica processing 44

4.2 Altemate solutions 46
4.2.1 Pre-commIt solutions 47

4.2.1.1 Local multipart time solution 48
4.2.1.2 Prepare-phase solution 49

4.2.2 Post-commit solutions 49
4.2.2.1 Commit-phase solution 50
4.2.2.2 Non-transaction solution 50

4.3 Conclusions 51
4.3.1 Evaluation of serial solution 51

4

4.3.2 Comparison to alternative solutions 51

Chapter Five: Reconfiguration of the Server State 53 -

5.1 Extensions to support reconfiguration 54
5.1. 1 Identifying replicas 58
5.1.2 Version numbers 56
5.1.3 Gossip processing in the hybrid state 57
5.1.4 Returning to normal processing and destroying obsolete replicas 61

5.2 Abstract implementation 61
5.2.1 Data structures 62
5.2.2 Changing configurations 62
5.2.3 Gossip processing 65
5.2.4 Other replica processing 67
5.2.5 ReturnIng to normal processing and destroying obsolete replicas 69

5.3 An optimization 70
5.4 How clients find reconfigured services 71

Chapter Six: Conclusions 74

6.1 Evaluation of the multipart tirnestamp technique 75
6.2 Related work 78

6.2.1 Forwarding addresses 79
6.2.2 Searching 80
6.2Z3 Establishing a rendezvous 81

6.3 Future work 82

5

Table of Figures

Figure 3-1: A service state represented as a graph 22
Figure 3-2: An example of using the location service 24
Figure 3-3: State of a service replica 27
Figure 4-1: Transaction scenario 41
Figure 4-2: State of an implemented service replica 44
Figure 5-1: State of a reconfigurable replica 63

i

V ~ *~* *~* ~****~* ~ .

Chapter One

Introduction

As the cost of computers decreases, finding ways to use multiple computers has been
on the increase. One way to use multiple computers is to distribute parts of a
computation over a system of nodes connected by a communications network. We call
such a system a distributed system. A distributed system can offer several advantages
over a traditional, centralized system. One possible advantage is the ability to move the
objects of a system from one node to another. We might want to move an object for
various reasons. For example, we may be able to increase system efficiency. It the cost
of sending a message to an object is proportional to the length of the path from the
sender to the object then If the object is moved "closer" to the processes that
manipulate it frequently, we would expect greater efficiency. Another example is to
redistribute the message traffic or load at a node by moving some of the objects from the
heavily used node to a node with less traffic or load. A third example is to prevent major
disruptions in access. If a node is going to be down for a significant amount of time, we
may want to move the objects residing on that node to another node. Or it may be that
the node simply cannot maintain the object any longer; this might happen if the node is
going to be removed from the system, or reassigned to another task.

Historically, objects were created, used, and destroyed at a single node. In such a
scheme, the location of an object can be part of its name, so finding an object is simple;
each node just "knows" how to determine where an object resides from its name.
However, In a world where objects move, the problem of locating them becomes non-
trivial. We can no longer just embed an object's location in its name. Since an object
may no longer be at the node where it was last accessed, we must have a way of finding
out its new location. Various methods for locating objects have been proposed.
Forwarding addresses [4) can be used to allow processes to find objects that have
moved by following a chain of addresses to the current location. A search for an object
can be done using a broadcast technique [7].

This thesis investigates the use of a location service to aid in finding objects that move.
Abstractly, a location service maintains associations of object names to locations. It
provides operations to read and update these associations. These operations are the%

only way to Interact with the service. Entitles that Invoke the service's operations are
called clients of the service.

-r

341 9. * .k -;

We have two main goals for our location service. First it should be highly-available.
Our definition of availability of query operations (operations that request Information from
the service) is if an object resides at a node that Is accessible to the entity trying to use
it, then with high probability the entity should be able to locate that object. We define the
availability of update operations (operations that change the service state) as the
probability that an operation invocation will be completed In a short period of time. To
achieve this goal, the service must tolerate system failures like node crashes and
network partitions. By tolerate, we mean that the service should degrade gracefully in
the presence of continuing failures. It may not be able to provide full service, but it
should provide as much information as possible and not just shut down completely.

The location service should also be efficient. Unfortunately, efficiency and availability
are somewhat inversely related. Making the service highty-available may introduce
inefficiencies. However, there are many techniques for achieving high availability. We
want to choose one that does not severely affect the response time of the service, nor
increase the number and sizes of messages excessively.

Simple, centralized implementations of a location service are easily realized and are
very efficient, but do not meet our availability requirements. If the node where the
service resides goes down, the service would be inaccessible to the entire system. If
this node is down long enough, It could cause the system to stop functioning.
Replication is a standard technique for achieving both high availability and efficiency.
Multiple copies of fth service state are kept at different nodes. Replication increases
availability; if one replia is temporarily inaccessible, work can continue using a different
replica. Replication can enhance performance by permitting clients to use the most
easily accessible rep"ia but it can also decrease performance if several replicas are
needed to perform an operation.

Once the data Is replicated at several nodes, the information at different replicas may not
be identical. This may occur if a node is down or inaccessible when an update is
performed. When such inconsistencies happen, there must be some way to determine
the correct response. One method is Gifford's majority voting algorithm [5]. In his
scheme, the set of replicas visited by operations that read the service state must
intersect with those that are visited by operations that modify the state. There is some
flexibility in choosing the sets of replicas for each operation. For example, if the service
state had three replicas, information could be wiltten to three replicas and read from just
one, or information could be written and read at two replicas. The first choice gives
more availability and faster response time to read operations, while the availability of the
write operation is poor, since all three replicas have to be accessible. The second

'if t % %.f V V%

choice trades off the availability and efficiency of read operations with the availability of

write operations. We would like to make both types of operations available and efficient.
-s

The replication technique we have chosen for our server is Uskov's multipart timestamp

technique [10]. This is a new replication method based on multipart timestamps and
goss/p messages. We chose the multipart timestamp technique because it affords us

higher availability and greater efficiency than more traditional replication techniques. It

allows us to do reads and updates at any one replica.

The contributions of this thesis are:

" a location service for Argus and a basis for object finding in general

" a practical application of the multipart timestamp technique

" extension of the multipart timestamp technique to allow reconfiguration of
the service state

In the remainder of this thesis, we present the design and implementation of a highly-
available, efficient location service for the Argus system. Chapter 2 gives the context for
our work. It states our model of computation: the assumptions we make about system

hardware and failures. It describes the features of the Argus system that are relevant to

this thesis. Also, it discusses what It means to move objects in Argus and where the
location service fits into the system.

Chapter 3 lays out the basic design for the highly-available location service, ignoring

Implementation issues like transactions to simplify the presentation. We assume that all

replacement transactions commit. This assumption is relaxed In Chapter 4, which
discusses the interaction of the server with the transaction system. The changes to the

replica state and operations to handle the issues raised by aborting transactions are
presented as we describe an actual implementation of the service. Some alternate

solutions are also discussed and compared with the implemented solution.

As the configuration of a system changes, we may need to change the configuration of

the location service as well. We would like to be able to change the number or locations

of the replicas that make up the server. Chapter 5 discusses extensions to the multipart

timestamp technique to allow reconfiguration. We also address the issue of clients

finding the service after a reconfiguration.

Chapter 6 presents our conclusions. We evaluate the multipart timestamp technique,

compare the work in this thesis to some related work, and suggest some areas for future
work.

9

Chapter Two

Background

In this chapter, we present background information to give a context for our work. First,
we describe our model of computation: what our assumptions are and what our notion
of failure is. Next, we describe the parts of the Argus system relevant to this thesis.

Finally, we describe what it means to move objects in Argus and how the location

service fits into the system.a

2.1 Model of computation

Our model of computation makes the following assumptions about the system hardware
and the effects of failures. A distributed system is a collection of physical nodes
interconnected (only) by a communication network. These nodes may be in

geographically distinct locations and may be administered by independent entities. A
node may consist of one or more processors and any number of peripheral devices. Wea
assume that processors are fail-stop [25]. Nodes can crash, but we assume that
processors do not exhibit Byzantine behavior.

The communication network may be of arbitrary topology, perhaps a combination of
local area networks and long haul networks. Processes on different nodes can
communicate only by passing messages over the network. We assume that in the
absence of network failures, any node can communicate with any other node. Again, we
assume that there are no Byzantine failures, but otherwise the network can behave
arbitrarily badly. In particular, it can partition. It can lose, delay, duplicate, or garble
messages. It can deliver messages out of order. We assume that we can detect
garbled messages and throw them away, treating them as lost messages. We do not
assume that we can distinguish between delays caused by a node failure, a network
failure, or a heavily loaded system. t

2.2 Argus

Argus is both a programming language and a run-time system. The Argus programming iL.
language is a high-level approach for writing distributed applications that need reliable,
consistent storage, but do not have severe real-time constraints [19]. The language is

4
10W

LlS

based on CLU [15] and is fully described in [16]. In particular, Argus retains all of the
abstraction mechanisms of CLU [14] and adds several more. The main features of
Argus that we are most interested in are the following: guardians and handlers, atomic
actions and atomic objects, mutex objects, and some parts of the system
Implementation, namely handler names and guardian managers.

2.2.1 Guardians and handlers
The programming language Argus supports a module type called a guardan. A
guardian is an abstraction of a processor and its state and resources. It may be thought
of as a logical node of the system. A guardian encapsulates long-lived, resilient data
and processes that manipulate this data. A guardian is created dynamically and resides
wholly on one physical node. There may be more than one guardian at a physical node.
Unlike regular objects, a guardian is an active entity; it has multiple Internal processes.
A guardian has zero or more background processes and a set of operations called
handlers. Handlers may be thought of as procedure objects that reside at a guardian
through which one can manipulate the guardian state and resources. Handlers are
Invoked as remote procedure calls, and their arguments and results are transmitted by
value [9]. The only way to use a guardian is to call one of its handlers. Each handler
call Is run as a separate process within the guardian. A handler call has "at-most-once"
semantics. If the call returns, it has been done at most once. If the call does not return
or fails, it has (effectively) not been done at all.

Guardians are the unit of failure in Argus. They either function correctly (as
programmed), or they fail completely. When a guardian fails, it Is said to have crashed.
The Argus system periodically tries to restart crashed guardians. When a guardian
crashes, all of Its processes die. A guardian may crash even If its node does not, but
when a physical node crashes, all of its guardians crash as well.

A guardian is implemented by a guardian definition. This definition includes one or more
operations called creators (used to create new guardian instances), the names of the
guardian's handlers, the declaration of the guardian's state, the background code, and
the recover code. A guardian has two types of state: volatile state is cheap, fast, and
does not survive crashes; stable state is expensive and slower. It is stored on stable
storage devices so that information will not be lost with arbitrarily high probability [12]
when a guardian crashes. A guardian's state is initialized as part of its creation. When a
guardian is restarted after a crash, its stable state is restored automatically and the
recover code (if any) Is run to reinitialize its volatile state. The background code Is
executed as a separate process after the creation of the guardian Is completed and after

V.
Kl*-

every recovery from a crash. A guardian can be destroyed in only two ways. The

guardian Itself can execute a terminate statement, or it can be destroyed using a

system program.

2.2.2 Atomic actions and atomic objects

Distributed computations in Argus are organized as atomic actions (or transactions).

Transactions have two properties of interest. The first property is indivisibiity. The
execution of one transaction never appears to overlap or contain the execution of

another transaction even if the i run concurrently. The second property is recoverability.

Either all of the effects of a computation are visible (the transaction has committed) or

none of the effects are visible (the transaction has aborted). When a guardian crashes,

all uncommitted transactions are aborted. Argus also supports nested subactions as a

method of concurrency control and isolation of failures [21]. In particular, an action
invoking a handler creates a subaction to send the call (the call action) and a subaction

at the remote site to do the call. This allows the program to abort a handler invocation

by aborting the call action without aborting the invoking action or waiting for the remote
action to terminate.

Argus programs achieve atomicity through the sharing of atomic objects. Argus provides

special built-in atomic objects as part of the language definition. These objects are

synchronized by the system using strict two-phase read/write locking (2]. Recoverability
is provided by keeping versions and a two-phase commit protocol [6]. A detailed
description of the Argus recovery algorithm is given by Old [23].

2.2.3 Mutex objects

Argus also supports a built-in type generator called mutex. Mutex objects are not

necessarily atomic objects, although they can be shared by transactions. A mutex

object is a mutable container with a lock associated with it. Mutually exclusive access to

the contained object is obtained using the seize statement that acquires the mutex's lock

in an exclusive mode.

Mutex objects are used primarily to implement user-defined atomic types. User-defined

atomic types are abstract atomic types implemented by the user, usually to gain

concurrency not allowed by the built-in atomic types. Like built-in atomic types, user-

defined atomic types must provide indivisibility and recoverability mechanisms.
Generally, a user-defined atomic type is implemented as a mutex surrounding a non-

atomic collection of atomic objects. (See Weihl and Uskov's paper [28] for the theory of

atomic objects and example Implementations.)

12

!' "l t& ',,t t, ., . r 4 I.%4 "4,"" ,. ,' 4 " , - ',. p..",,,,.." r ,. L , ., , ' .""•• " " ,""-"'

2.2.4 System Implementation

When guardians are created, they receive unique identifiers (guardian ids) that serve as

their system names. A guardian id contains the id of the node at which the guardian was
created. Handlers also receive identifiers (handler ids). A handler id Is unique with
respect to Its guardian. A handler name is a (guardian-id, handlerjid) pair.

Parts of the Argus run-time system are linked into every guardian when it is created.

They support various aspects of the Argus programming model such as stable storage

and transactions. Other parts of the run-time system are encapsulated in a
distinguished guardian called the guardian manager. There is a guardian manager at

every node of the system. The guardian manager is responsible for creating new

guardians, restarting guardians after they crash, and managing resources used by
guardians such as releasing stable storage when a guardian is destroyed.

Currently, if a regular guardian does not know a handler's address when it makes a

handler call, it generates a lookup request to the guardian manager at its node. The

guardian manager can take apart the guardian id part of a handler name and "know"
where that guardian (and hence the handler) is located. Currently, guardians do not
move, so the guardian manager just returns the given handler name and the node
embedded in the guardian Id.

2.3 Moving objects In Argus

Object movement can be viewed in two ways. One view is that objects have unique
proper names by which they will always be known. When an object moves, it keeps that

name and is the same object as before. When it is destroyed, no other object can have
its name. This scheme models the world of physical objects. When a physical object is
moved, it retains its identity Independent of location.

The second view is that objects are replaced. That is, moving an object is really creating

a new object in the new place, copying the state of the old object to the new object, and ,

destroying the old object. The old name is now an alias for the new object. These two
views are equivalent as far as finding objects is concerned. Either way, the client only
has to have a name to find an object. However, the replacement view is more flexible.

We can "split" objects. For example, suppose we have an object that has some number
of operations. If we wanted to separate the operations into two groups, we could replace

the single object with two new objects and alias the old operation names with the
respective operations in the new objects. We can also "merge" objects by replacing two
or more objects with a single object. Both splitting and merging objects can be

13

implemented completely within the run-time system, causing no changes In clients. On
the other hand, to split or merge objects In the proper name view would require that
clients be able to handle changes in names.

For the Argus location service, we have chosen the replacement view because of its
generality. The computational model of Argus allows (only) guardians and handlers to
be replaced. All other objects are encapsulated by guardians so their movement is
implied by the replacement of guardians. Handlers are organized by guardian, but may
be moved in the sense that a single guardian's handlers can be bound to different
replacement guardians' handlers. We assume that the effect of replacement is atomic.
A guardian either moves completely or remains at the original node. A guardian cannot
be "partially* moved. We also assume that replacements for a particular guardian are
infrequent.

We expect that there will be two types of replacement in Argus. The more common type
will be straight relocation, where a guardian is replaced by an Identical guardian
(meaning it provides the same interface) at a different node. The other type is
subsystem replacements that may involve replacing multiple guardians and binding their
handlers in arbitrary combinations. A summary of the basic replacement method is the
following1 :

1. Start a transaction.

2. Stop the activity at the old guardian(s).

3. Create the new guardian(s).

4. Transfer the state from the old guardian(s) to the new guardian(s). This
allows the new guardian(s) to take up where the old one(s) left off.

5. Bind the handlers of the old guardian(s) to those of the new guardians(s).

6. Destroy the old guardian(s).

7. Commit the transaction

If any of these steps fails, then the transaction aborts and the replacement fails. The old--
guardian(s) recover and resume as if they had crashed. If all of the steps succeed, the
transaction commits, and the replacement takes over.

When a guardian is replaced, calls to its handlers need to be routed to its new location.
We want the run-time system to do this automatically to support the view that handler
invocation is location-independent [13] so that application programmers will not need to

1This mehod is due to SBoo's work on dynamic replacement [1].

14 "0

be concerned with location. We provide support for this view In the form of a location
service. The location service records the handler bindings of step 5. A guardian would
generate a lockup request to the location service to get the current binding of the
handler If It does not know the handler's location.

A simple Implementation of the service might be to use a single guardian as the server
with the service operations as handlers. However, this Implementation is not resilient to
failures. If the server crashes or gets partitioned from the rest of the system then the
service Is unavailable and the system stops. Therefore, we must replicate the service
state to obtain high-avalability. The rest of this thesis presents the design and
construction of such a service.

0

15

S

Chapter Three

A Highly-Available Location Service

In the next three chapters, we present the design and implementation of a highly-
available location service for Argus. Our approach will be to present the basic structures
and algorithms in this chapter, ignoring implementation issues like transactions and
reconfiguration. Chapter 4 will describe an implementation in the Argus system that
addresses the issue of transactions, the probl. -ns it causes, and the solutions to those
problems. Reconfiguration is addressed in Chapter 5.

For this chapter, we make the following assumptions:
* all replacement transactions commit

" the server has a fixed number of replicas in known locations

As discussed in Chapter 2, both guardians and handlers move in Argus. However, the
run-time system is really only interested In handler addresses. Moving a guardian also
implies moving its handlers, so moving a guardian is an optimization for moving each of

its handlers.

Recall that a guardian id contains the id of the node at which the guardian was created.
As a result, a handler's name is also its initial address. We write a handler address also

as a (guardianid, handler-id) pair. If a guardian does not know the location of a
handler when a call is made, it generates a lookup request to the guardian manager at
its node. Since guardians currently do not move, the retumed address is the same as
the sent one and a call is always made. If the call is to a non-existent guardian, the
guardian manager at the called node generates a failure exception that is raised in the
calling guardian.

The location service will allow us to move guardians in Argus by keeping track of the

new handler addresses. It will also allow us to originate the failure exception locally (via
the server) for non-existent guardians instead of waiting until after the call is tried at the
called node.

This chapter begins with a presentation of Uskov's multipart timestamp technique, a
replication technique for constructing highly-available services. In Section 3.2, we
describe the state and operations of the location service and give an example of how the

16

If0

service is used. In Section 3.3, we present an abstract implementation of a replica.
Finally, in Section 3.4, we discuss how the clients use the location service in the Argus
system.

3.1 Multipart timestamp technique

The multipart timestamp technique was developed as an optimization for the Argus
orphan detection algorithm [26]. In the multipart timestamp technique, the data Is
replicated as in other methods, but updates and reads occur at any (one) replica. This
Increases the chance that the service will be available and Is more efficient than trying to
access multiple replicas. To keep the replicas up-to-date, information Is propagated in
the background as "gosslp" messages. While the system is running smoothly,
Information propagates quickly. However, this is not always the case due to crashes
and partitions. A replica may have out-of-date Information when a client does a lookup.
This is not a problem If the client does not need to know the most up-to-date information,
but just something that Is "recent enough." The technique is suitable for services where
clients do not need to know the most up-to-date informatioff. To improve its utility, the
technique gives clients a way of specifying how recent the Information must be.

The information in the service can be considered as a set of states in which each state
represents the effects of some number of update operations. A state S, is more recent
than a state S2 It every update represented in S2 is also represented in S1. The service
associates a timestamp with a particular state of the Information. The timestamps are
partially ordered and must meet one Invariant: later timestamps are associated with
more recent states. Each replica maintains a current state and Its timestamp.

There are two types of operations in a service. Update operations change the service
state and Increment the timestamp. They return the new timestamp to clients, thus
identifying a state in which the update operation has taken effect. Query operations read
the service state. They take a timestamp argument; the service guarantees that the
answer will come from a state with a timestamp at least as late as the argument
timestamp. Thus, if a client needs an answer that reflects a particular update, it can
send as a query argument a timestamp known to be greater than or equal to the
timestamp returned by that update and be sure that the answer it gets Is recent enough.

If the argument timestamp of a query Is less than or equal to the timestamp at the
replica, the replica can answer the query immediately. Otherwise, the replica has to wait A
until it has more recent Information. Although a client might ask for a "future" state, in *6'

practice, clients will only ask for states that exist, so a replica only has to wait until the
Information needed is propagated to it from the other replicas.

17

, " -6 " .
W•VV , 4 *r.N~ " ' ',; " . . • : .~ ,*. ,.."

It is necessary that each replica be able to generate a new timestamp independently or
else we would be dependent on a timestamp service having the same problems we are

trying to solve and will not have gained anything. The notion of the multipart timestamp

(henceforth, just timestamp) is Introduced as a solution. The timestamp is a sequence

(tjt2...tQ where t is the local time (either logical or real) at replica i and k is the total

number of replicas in the server. Each part can be incremented independently of any

other part, and the 1h replica increments the timestamp by advancing only the time in the

1h part. Since each replica advances only its own part, the timestamps produced by

different replicas are unique and can be generated independently. Among the

operations provided by tiestamps are the following:

merge - proc (tsl ,ts2timestamp) returns (timestamp)

% Returns a timestamp ts' where ts'[i] = max(tsl [ij,ts2[i]), for i - 1 ,...,k.
% (ts] refers to tsi)

equal - proc (tsl,ts23lmestamp) retums (bool)

% If tsl [1] , ts2[i], for i = 1,...,k, then returns true else returns false.

It = proc (tsl,ts2:timestamp) returns (bool)

% If tsl11] ! ts2[], fori = 1,...,k, and 3j, such that tsl]] < ts2,
% then returns true else returns false.

If timestamp S is not less than or equal to T and T is not less than or equal to S, then S

and Tare Incomparable.

Information is propagated in the background In the form of "gossip" messages. The

gossip scheme is based on those used in solutions to the dictionary problem posed by

Fischer and Michael [3, 29]. Replicas keep a list (the send gossip list) of update

operations that have occurred at that replica and their timestamps and the update

operations they receive from the gossip of other replicas. Periodically, a replica sends _

its send gossip list and its current timestamp to all other replicas in the service. 'A

When a replica receives a gossip message, it compares the imestamp of the message

and its timestamp. If the message's timestamp is less than or equal to the replica's

timestamp, the message is discarded. Otherwise, each entry in the gossip list is read,

and it is determined whether the replica has heard of that operation. If the entry's •

timestamp is less than the replica's timestamp, the entry is ignored; otherwise, the entry

is processed in the same manner as if that update had been invoked at that replica,

except that the replica's timestamp Is not Incremented. When all of the entries in the ,

% %.

gossip message have been processed, the message's timestamp is merged into the
replica's timestamp.

An Important practical consideration for the multipart timestamp technique is how to

remove obsolete information from a replica state. For example, the send gossip list will

grow without bound if we do not remove any entries. However, we cannot remove an

entry from the list at just any time. We have to wait until all of the other replicas know

about the operation in question. We do this by keeping a table (the gossip table) of the
timestamps the other replicas send with their gossip messages. If the sent timestamp is

greater than the timestamp of an entry in the send gossip list, then the sending replica

has heard about that update operation. When all of the timestamps in the gossip table

are greater than or equal to the entry's timestamp, all of the replicas have heard about

the update operation, and the replica can remove that entry from its send gossip list.

Other forms of garbage collection in the replica state will also be necessary. However,

the structures in question are specific to the type of service and information provided, so

we will defer discussion of these forms until we present the abstract implementation of
the location service.

A client uses the service by sending an appropriate message to a replica. The replica

responds with a reply message. If the response is slow, the client may send the

message to a different replica, or it might send messages to more than one replica in

parallel. As stated before, we make no assumptions about the delivery of messages.
To make things more efficient, a client can maintain a local cache of the information and
timestamps it obtains from the service, and thus avoid some making queries.

3.2 Operations of the location service

In this section, we describe the operations of the location service. First, we present the

specifications of the location service. We model the service as an abstract data type,

giving its representation and operations. Then we use an example to illustrate the uses

of the service operations and the different types of replacements that might happen in

the Argus system.

3.2.1 Specifications

The location service provides four operations: enterguardians, deleteguardlan, rebind,

and lookup. Enter guardians Is called by the guardian manager to enter one or more

guardian Ids at the server; this operation is intended to be used by the guardian

19

% N %0

manager to "pre-enter" guardian ids so that entering a guardian Id will not have to be

done during the actual creation of a guardian. Creation is a fairly slow process, and

entering a guardian's id during its creation would make it even slower since the guardian -.

manager would have to wait for the return of the enter guardians operation before

allowing the creator operation to return. The operation allows several guardian ids to be

entered at once to reduce the number of interactions with the location service.

Delete, guardian is called by the guardian manager to delete a guardian id from the

server. It is called when a guardian manager destroys a guardian independent of a

replacement. Rebind is called by the replacement system to rebind handlers moved in a

replacement transaction and to delete the guardian ids of the replaced guardians.

Finally, lookup is called by the run-time system to find the address of a handler.

The remainder of this section gives a precise specification of these operations. The

specification is given in terms of an abstract model [17] of the location service, which is

viewed as consisting of the following components:

ts A timestamp identifying the current state of the service.

hmap A record of handler bindings. This is a mapping of handler
addresses to handler addresses. A handler hl is bound to h2 when
we want the handler calls to hi to be routed to h2.

gmap A record of guardian bindings. This Is a mapping of guardian ids to
guardian ids. A guardian gl is bound to g2 when we want all of the
handlers in gl to be bound to the corresponding handlers in g2,
except those already bound in hmap.

entered The set of all guardian ids that have ever been entered.

deleted The set of all guardian ids that have ever been deleted.

A third set, the exists set is the difference between the entered and deleted sets.

Before we begin the discussion of the service operations, we define some terminology.

A guardian id exists at the server if it is in the exists set. A guardian id is deleted at the

server if it is on the deleted set. The left component of a binding is its source. The right

component of a binding is its target. We also speak of a guardian id as being a source

or a target if it appears in the source or the target of a binding, respectively.

The enter guardians operation has the following interface:

enter guardians = proc (gset:SetOfGids) returns (timestamp)

The operation takes a set of guardian ids as an argument. The service adds the

guardian ids to the entered set, increments its timestamp, and writes both to stable
storage. Then it returns its timestamp as a result. We require the system to generate

unique ids for guardians and not to reuse them. In particular, we require that a guardian

Id not be entered at the service after being deleted from the service.

20

The delete guardian operation has the following interface:

delete-guardian = proc (g:guardianid) returns (timestamp)

It takes a guardian id as an argument. The service adds the guardian id to the deleted

set, increments its timestamp, and writes both to stable storage. Then it returns its

tmestamp as a result.

The rebind operation has the following interface:

rebind = proc (gm:MapOfGids, hm:MapOfHandlers, t:timestamp)
returns (timestamp)

It takes a guardian id map, a handler address map, and a timestamp as arguments.
(The reason for the timestamp argument will be explained later.) The guardian id map is

a set of bindings of guardian ids to guardian ids. The handler address map is a set of

bindings of individual handler addresses to handler addresses. The service adds the

bindings in gm to gmap, adds the bindings in hm to hmap, adds the source guardian ids

to the deleted set, increments its timestamp, and writes these structures to stable

storage. Then it returns its timestamp as a result. The returned timestamp is

guaranteed to be greater than or equal to the argument timestamp.

We can view the information in exists, hmap and gmap as a directed graph where the

vertices are handler addresses and the edges are the handler address bindings. The

edges are directed from the source to the target of a binding. Guardian ids are

conceptually expanded to their corresponding handlers, and guardian id bindings are

conceptually expanded to their corresponding handler address bindings for this graph. If

there is both a guardian id binding and handler address binding for a particular handler,

the handler address binding prevails. Figure 3-1 shows the graph of a particular state of

the service. In this example, guardians G and H each have three handlers, guardians F

and K have two handlers, and guardians L and M have one handler.

The information has the following representation invadant:
1. The graph has no cycles.

2. Only one edge may emanate from a vertex.

The information must meet this invariant because the lookup procedure traverses this

graph to answer queres about the service state. The first part guarantees termination

for the lookup procedure. The second part guarantees a deterministic choice.

We rely on the replacement system to obey certain conditions needed to maintain the

representation invariant of the binding information. These conditions insure that the
inputs to the rebind operation are well-formed. We state these conditions here:

14,
21

%-

0'e.~. ***.~I-
6M U-61

State of the ezrice:

gsp: G -- >
L -- >K1

hmap: Ehi -- > Khi
2, h2 -- > K, h2
E,h3 -- > L,h.

eists: (1,KM)

Graph of the infozmation:

(r, hi)

(7, h2)

(G,h l) ---- > (a, h) ---- > (K, hi)

(0, h2) ---- > (K, h2) ---- > MK h2)

(G,h 3) ... > (, h3) ---- > (L, hi) ---- > (K, hi)

Figure 3-1: A service state represented as a graph

S
1. The source and target guardian ids of bindings in gm and hm exist.

(Recall that gm is the guardian Id map argument to the rebind operation
and hm is the handier address map argument.) This prevents possible
bindings that would create loops in the graph.

2. A guardian id is not both a source and a target in gm or hm. This prevents
explicit loops in the inputs to rebind.

3. A source of a binding in gm is not bound to two different targets in gm, and
a source of a binding in hm is not bound to two different targets in hm.
This is a uniqueness condition on the information in the inputs to rebind to
prevent more than one edge emanating from a vertex in the graph.

4. The source of a binding in gm or hm is not already the source of a binding
in gmap or hmap, respectively. This is a uniqueness condition on the P6
relation between the inputs in rebind and the service state to prevent more
than one edge emanating from a vertex in the graph..., .

Recall that our idea of replacement is that we create the replacement guardians, bind
the handlers of the old guardians to them, and then destroy the old guardians.
Therefore, these conditions can be met easily.

22

,...

vu, U~KJ tl, I~l '. '. J , t' .' j~' ' '%, . "
. ' .".'- .. , %-'-''--.',.* .,- . -' S ,. . " ,-. ' "" .""r " -e ''

The rebind operation needs a timestamp argument because the lookup algorithm will not

work if a replica knows about a rebind but not the enter of the target guardian id(s). The

lookup would Incorrectly state that the handler had been destroyed in such a case. We
solve this problem by having the replacement system send a timestamp that is at least

as late as the merge of the timestamps returned by the enter guardians operations for

all of the target guardian id(s) as an argument. Since the returned timestamp is
guaranteed to be greater than or equal to the argument timestamp, it is the timestamp of

a state that contains information about both the enter(s) and the rebind.

The guardian id map is a compact way of indicating that all of a guardian's handlers

have been bound one-to-one to its replacement guardian, except for the ones already

bound in hm. We could have simplified matters by having only handler address

bindings, but we expect guardian for guardian replacement to be more common than -

replacements needing to bind arbitrary handlers. Guardian id binding also allows us to

replace a guardian without having to know the exact number of handlers that it has.

The lookup operation has the following interface:

lookup = proc (h:handler address, t:timestamp)
returns (handleraddress, timestamp) signals (handler-destroyed)

It takes a handler address and a timestamp as arguments. If the handler address

argument is bound in the abstract state, it returns a handler address and its current

timestamp as results; otherwise, it signals handler_destroyed. The returned timestamp

is guaranteed to be greater than or equal to the argument timestamp. A handler address

is bound in the abstract state if:
" there is a path of length zero or more emanating from the vertex labeled

with the handler address argument in the graph of binding information and

" the guardian id at the end of the path is in the exists set.
Lookup is a query, so a replica can reply to a lookup only if its timestamp is greater than
or equal to the argument timestamp.

3.2.2 An example

To make our discussion more concrete, we present an example of how the location

service would be used and what information it keeps. Figure 3-2 goes through this

example pictorially. To simplify the presentation we will assume that all of the updates

and lookups occur at one replica so that we can ignore the gossip.

Before we begin the example, we define some more terminology. A guardian is created

when the creator call returns to the creating transaction. A created guardian is assigned

23

1
.7

(1.r and G are created:

Vr G gmap: <empty>
bmap:<epy

hi hi exists: (r,G,3,K,L,M,3)

h2 h2
h3 h3

(2). After destroying T and moving 0:

G ----- >3 gap: G -- > H
bmap: <empty>

hi hi exists: (R,K,L,K,N)
h2 h2
h3 h3

(3). After "splitting" R:

G ----- >3 K map: G -- >3R

hi hi ----- >hl H,h2 ->R,h2

h2 h2 ----- >h2 R,h3 ->L,hi

h3 h3 -- exists: (K,L,M,N)

IL

(4). After moving L:

G ----- >3 K map: R ->

hi hi ----- >hi bmap: 3,hl -- > R,hi

h2 h2 ----- >h2 H,h2 -- > K,h2

h3 hi -- ,h3 -- > L,hl

I L ---- Mexists: {K,M,3)

(5). After "merging" K and K:

G ----- >3 K N gmap: G-->3
L -->M

hl hi------ >hi----------------- >hi bap: H,hl -- > K,hi

h2 h2------ >h2----------------- >h2 E,h2 --> K,h2

h3 hi---------------->h3 H,hS -- > L,hl
L L-------) >K K,h -- > N,hl

IIK, h2--> N,h2
*---- >hl hi- M,h -- > N,hi

exists: in)

Figure 3-2: An example of using the location service

24

% % %

-. 6 k ! ,WA

S

a guardian Id that exists by the guardian manager. A guardian is destroyed when the

destroying transaction commits. A destroyed guardian's Id is deleted from the service by

the guardian manager. -.

We begin the example by invoking:

enter guardians ({F,G,H,K,L,M,N))

This enters the guardian ids F, G, H, K, L, M, and N into the exists set. Next, we create

two guardians that are given guardian ids F and G; each has three handlers. Step (1)
shows the replica state after the ids are entered and guardians F and G are created.
Both maps are empty and there are seven guardian ids in the exists set.

Continuing the example, we destroy guardian F, resulting in the call:

deleteguardian (F)

Next, we move G. We do this by creating a guardian, also with three handlers, that is

given the guardian Id H. We bind G to H by invoking:

rebind ({(G,H)},{),ts)

The resulting state is shown in step (2). F and G have been destroyed. There is an

entry in gmap, and F and G are no longer in the exists set. A lookup of (F,hl) would
result in a handlerdestroyed exception because there are no bindings for F in either

map and F is not in the exists set. A lookup of (G,hl) would first find a path from G

ending at H. Since H is in the exists set, the operation would return (H,hl).

In step (3), we "split" H. We do this by creating guardian K with two handlers: hl, h2; and

guardian L with one handler, hl. We bind H's handlers by invoking:

rebind ({ },(((H,hl),(K, hl)),((H,h2),(K, h2)),((H,h3),(L,hl))},ts)

Then H is destroyed. Now when a lookup operation of (G,hl) is done, the service

follows the path in gmap to H and then sees that (H,hl) has been bound to (K,hl) in
hmap, which is the end of the path. K is in the exists set, so it returns (K,hl). When a

lookup of (G,h3) is done, the service gets to H again, but sees that (H,h3) is bound to

(L,hl), so (L,hl) is returned.
Next, we move L. We create guardian M with one handler, hl. We invoke:

rebind (((L,M)},(},ts)

Then L Is destroyed. Step (4) shows the state after this is done. A lookup of (G,hl) still

returns (K,hl) (K is still In the exists set), but now a lookup of (G,h3) returns (M,hl),

since L is bound to M in gmap and M is in the exists set.

Finally, we "merge" K and M together. We create guardian N with three handlers: hl,

h2, h3. We invoke:

25

rebind ({ },{((K,hl),(N,hl)),((K,h2),(N,h2)),((M,hl),(N,h3))),ts)

Then K and M are destroyed. This final state is shown in step (5). A lookup of (G,hl)

returns (N,hl), and a lookup of (G,h3) returns (N,h3).

3.3 Abstract implementation

In this section, we present an abstract implementation of our location service. It is
abstract in the sense that we only deal with abstract data types and operations. We
ignore issues like transactions and reconfiguration. We deal with these issues in later
chapters. For the first four parts of this section, we also assume that replicas do not
crash. The last part of this section discusses how to deal with replica crashes through
the use of stable storage.

We assume that replica processes access data structures one at a time. That is, each
of the processes runs in a critical section. This is easy to implement in Argus using the
mutex construct.

3.3.1 Data structures
A replica is implemented by a guardian. We begin by describing the state of a replica.

The state of the replica has many components. We will use the following notation to
describe the types of the various components:

{itemjtype) denotes a set of items of type itemjtype

(item 1, item2) denotes an ordered pair where the first component is of type
item1, and the second component is of type item2.

key -+ data denotes a function mapping items of type key to items of type
data. An individual (key, data) pair is referred to as an
association.

Gmap is the map of guardian id to guardian id bindings. Its type is:

MapOfGids = guardlan-id -4 guardian-id;

Hmap is the map of handler address to handler address bindings. A handler address is
a (guardian-id, handler-id) pair. The type of hmap is:

MapOfHandlers = (guardianid, handler-id) -4 (guardian-id, handler-id);

Exists is a set of guardian ids. It is the set of currently existing guardians; it is the same
as the exists set described in Section 3.2. Its type is:

SetOfGids = (guardianid };

26

Deleted Is a set of (guardian -Id, timestamp) pairs. It Is a partial set at the guardian Ids
that have been deleted along with the timestamp of the delete guardiai or rebind
operation associated with the delete event.' Its type is:

SetOfDeletedGids = { (guardian-id, timestamp));

Sendgossip Is a set of (timestamp, updatejecord) pairs. It Is a partial set of the
update operations reflected in the replica's current state along with the timestamp of the
operation. Its type Is:

SetOfUpdate_records , { (timestamp,updatejecord)}

An updaterecord represents an update operation. Its type Is a discriminated union:

update_record - oneof [enter : SetOfGlds,
rebind rebind entry,
delete guardlan-id]

rebind-entry = struct[gm:MapOfGids, hm:MapOfiHandlers]

The field components of the arms of the update record are the arguments to the
operation represented.

Gossip table associates timestamps to replicas and is an array of timestamps. Ts Is the
current timestamp of the replica. My Index is the Index of the replica In ts and
gossip table. My.part is the value of the replica's part in ts (that is, ts[my Index.
Figure 3-3 summarizes the state of a replica. We will use the notation
varlable.component name to refer to the various components of any record-like type.
The components of the server state will be referred to by S.componentjname.

gmap MapOfGlds;
hmap MapOfHandlers;
exists : SetOfGids;
deleted SetOfDeletedGids;
send-gossip SetOfUpdaterecords;
gossipjable array[timestamp];
ts : timestamp;
myjndex :int;
mypart "int;

S
Figure 3-3: State of a service replica

27 V4

• N

"" '- . .d. ' .. . I' d "t,' . . " " d~ f'4~' ' - -: " " ' - " " : : ; - : - " ' ! , '

3.3.2 OperatiOns

For the discussion of the server operations, we define the following procedures on maps:

key isjn = proc (m:map, k:key) returns (bool)

% Returns true if there is data associated with k in m;
% otherwise returns false.

fetch-data = proc (m:map, k:key) returns (data)

% Requires that k be associated with some data in m.
% Returns the data associated with k In m.

addassociation = proc (m:map, a:assoc)

% Adds a to m. It overwrites any previous association to a.key in m.

removeassociation = proc (m:map, k:key)

% Removes the association (k,?) from m if there is one.

We also define the procedure:

wait_until = proc (condition:bool)

% The process executing this procedure waits for the condition to be
% true before proceeding. S

Recall that a client can call the same operation with the same arguments at multiple
replicas (if the initial call is too slow to respond or they were done concurrently). This
can lead to duplicate operation messages. A duplicate enter guardians message may ,
cause problems if it is "late", causing a replica to reenter a guardian id after it has been
deleted. We implement the enter guardians operation without checks for duplicate
messages, because the concrete implementation in the next chapter prevents duplicate
operations. However, some of the alternative solutions proposed in the next chapter do
not prevent duplicate operations. For implementations of these solutions, we would first
check if a guardian id is in the deleted set before putting it in the exists set. Duplicate 0
deleteL.guardian and rebind messages cause no harm because the reintroduction of the
information they carry only causes extra work for the garbage collection procedures
(although we would probably want to check for them in a real implementation to avoid
wasted effort).

28

S ' V V -~- V 1, I ~.~ r Im

The service operations are implemented In the following manner:
enterjguardlans - proc (gset:Se"~Glds) returns (timwestamp)

S.mfy..a : S.mfy-part + 1;
S.ts(8.myijndexj :- S.my...ar; % advance my pait In ts as well
Sexidsts:- Sexists u gset
8.send_9osslp :a S.sendgosslp u {(S.tsmake_enter(gse)));
S.gosapjabeS.my_NexJ :. SWt
return (S.ts);

end enterjuardlan

deletjuardan - proc (g:guardlanjd) returns (timtestamnp)

S.my.$afl :S.My-Part + 1;
S.tsS.myjndexj :- S.my...afl
SeOxists :- S.exlsts - {g);
S.deleted:a S-deleted u {(g,S.ts));
8.sendjaosslp := S.sendgosslp w {(S.ts,mnake-delete(g)));
S.gosslp able(S.myIndexj :. S.Is
return (SAts);

end deleteguardlan

rebind a proc (gm:MapOfGlds,hm:MapOHandlers,t1ImestaTip) returns (timestamp)

% w~ matches any

wait~until (8.ts z t)
sources: SetOf~lds :. {g 1 3 (g,?) e gm v 3 ((g.?),(?,?)) e hm)

S.mym.pal: S.my..pafl + 1;
S.te[S.myIndexi :- S.my~part,
Sexidsts :- Sexist - sources;
for 9 e sources do S.deleted :. S.deleted u. {(g.S.!s)) end;
for gassoc e gm do add-associatlon (S.grnap, gapssoc) end;
for h-assoc e hm do add -associatIon (S.hmap, hassoc) end;
S-send..gosslp :- S.sendgossIp u {(S.ts,make-rebind(

mnake_rebind..entry (gm,hm))));
S.gossip able(S.myjindexi : S.ts;%
return (S.1s);

end rebind *J. ..

29

lookup - proc (g:guardianid,h:handlerid,t:timestamp)
returns (guardian id, handlerid, imestamp)
signals (handlerdestroyed)

wait untl (S.ts > t)
while true do

if key is-in (S.hmap, (g,h))then
(g,h) : fetch data (S.hmap,(g,h));

elseif key_isn (S.gmap, g) then
g :_ fetchdata (S.gmap, g);

elseif g e S-exists then
return (g,h,S.ts);

else
signal (handler-destroyed);

end;
end; % while

endlookup

Guaranteeing that a replica will have a timestamp greater than or equal to an argument
timestamp means that a replica may have to wait to do an operation if its timestamp is
not large enough. This is not a problem for lookups since they do not tie up replicas.
However, rebinds tie up replicas, so we do not want to have them wait long. Since
typically guardian ids are pre-entered long before they are used, we expect that all
replicas will know about the enters and have timestamps that are large enough by the
time a rebind operation is invoked, so there will be no wait. An alternate strategy would

have been to make the rebind operation responsible for adding the target guardian id(s)
to the exists set as well. Then the operation would not need a timestamp argument.
However, we would still have to have the enter guardians operation to pre-enter

guardian ids for normal guardian creation.

Recall that we assume that the replacement system follows the well-formedness
conditions for the inputs to the rebind operation. We did not explicitly check for these
conditions here, but in a real implementation, it would be a good idea to do so, to guard

against replacement system failures.

3.3.3 Gossip

A replica periodically sends a gossip message to all other replicas. How often a replica " "

sends gossip depends on two factors: how often and for how long we expect a replica to
crash, and how expensive it is to send messages. If we expect that replicas will crash

often or for long periods of time, we would want to gossip as soon as possible after the
replica performs an update. This is because if a replica goes down before getting a
chance to gossip, all queries that need to have that update will be delayed until the

30

.e eIf J e ep Pe

repflca comes back up. This implies smaller messages being sent often. On the other
hand, if we expect that replicas will not crash often or for very long, we can accumulate

update operations and send them in one bunch. The messages are larger, but are sent
less often. We think the latter will be the case most of the time.

A gossip message M has components gossip list, which is the send gossip list of the
sending replica, ts, the current timestamp of the sending replica, and index, the index of
the sending replica in the gossip table. Upon receiving a gossip message, the receiving
replica invokes the following procedure:

gossipprocessing - proc ()

S.gossip_table[M.index] :- merge (S.gossiptable[M.index], M.ts)
if M.ts < S.ts then return end;
for u E M.gossip_list do

if u.ts -!5 S.ts then
tagcase u.rec of

enter (gset:SetOfGids)•
S.exists :- S.exists u gset -

{g I g e gset A 3 d e S.deleted s.t. g - d.guardian-id);
% some of the guardian ids may have already been deleted

delete (g:guardianjl) :
S.exists :- S.exists - (g);
S.deleted :- S.deleted u. ((g,u.ts));

rebind (r:rebind-entry) :
sources: SetOfGIds :- {g 13 (g,?) E r.gm v 3 ((g,?),(?,?)) e r.hm)
S.exists :- S.exists - sources;
for g e sources do S.deleted :- S.deleted u ((g,u.ts)) end;
for gassoc e r.gm do addassociation (S.gmap, gassoc) end;
for hassoc e r.hm do addassociation (S.hmap, hassoc) end;

end; % tagcase
S.sendgossip :- S.sendgossip u {u);
end; % if

end; %for
S.ts :- merge (S.ts, M.ts)
S.gossipjable(S.myindex] :- S.ts

end gossip-processing

In this gossip scheme, a replica sends its entire sendgossip list to all other replicas

regardless of what the gossip table says the other replicas already know. The garbage

collection algorithm removes an entry only when a replica knows that it is known by all
replicas. If a replica that does not know (or that the sender thinks does not know) about
an entry goes down or is partitioned from the sender for a long period of time, that entry
may be sent many times to other replicas that already know about it. An approach for

reducing the sizes of gossip messages is to not send an entry to replicas that know

about it already. This would reduce the size of gossip messages and the amount of

31

busy processing at the receiving replica, but It does so at the expense of space or

computational time at the sending replica. A replica would either keep separate

send._gossip lists for each replica, or it would generate a new list for each replica every

time it gossips.

3.3.4 Garbage collection

Garbage collection of the sendLgossip list is straightforward. It is implemented by the

following procedure:

gosspf-denp - proc ()

for u e S.send goesip do
if V i, S.gossipjableli] > u.ts

then S.sendgossip :- S.sendgossip - (u) end;
end; % for

end gossip_deanup

Garbage collection also needs to be done on the deleted set. Like the case of the

sendgossip list, the entries in the deleted set need to be kept until all the other replicas
know about the delete. This is because a gossip message containing the

enter guardians operation for a deleted guardian id might arrive after the delete
operation for that id. If a replica waits until all the replicas know about the delete, then it

knows that all future gossip will either contain the delete operation or no information for S
that guardian id. (This is because of our requirement that guardian ids not be entered

after they are deleted.)

There is a second problem with garbage collecting the deleted set. If there can be

duplicate enter guardians messages (from unsuccessful calls), one may arrive after an

entry in the deleted set has been garbage collected. We can handle this problem by
making assumptions about our communications network. We assume that the clocks at

all nodes are approximately synchronized with maximum skew of E [11, 20], and we

impose an upper bound 8 on message delay. Messages are marked with the real time

at the sending node. At the receiving replica, messages that are marked as more than e

+ 8 older than the local time are discarded. (That is, we pretend such a message never

arrived.) It is not difficult to choose reasonable values of E and 8 -- each can be quite
large -- so this scheme is practical. To handle late enter guardians messages that are

not discarded but arrive after the delete guardian message, we retain information about

deletes at least E + 8 more than the time in the delete guardian message. The deleted

set becomes a set of (guardian id, timestamp, time) triples and entries can be garbage

collected only if both the timestamp condition and the time condition are met.

32

Again, we will not give an implementation that takes the late enter guardians messages
into consideration because the concrete Implementation described in the next chapter
eliminates this problem in a different manner. Hence, the algorithm for garbage
collecting the deleted set Is the same as for the send gossip list:

deleted cleanup - proc ()

for d e S.deleted do
If V I, S.gossipjablei] > d.ts

then S.deleted :- S.deleted -(d) end;
end; % for

end deleted_cleanup

Garbage collection for gmap and hmap Is trickier since the paths run through both maps.
We will call a path that ends with a guardian id in the exists set an active path.

Conversely, a path that ends with a guardian id not In the exists set is an Inactive path.
We cannot remove a binding if it is part of an active path. But instead of checking

whether a binding is part of an active path, we can instead just check if a given binding is

the last binding of an inactive path and remove It if It Is. Eventually, all of the bindings in
an Inactive path are garbage collected since the guardian ids of interior vertices of a path

are not In the exists set. (This is because the the rebind operation deletes the source

guardian Ids.) The following code implements garbage collection for gmap and hmap:

mapfleanup - proc ()

for (gl,g2) e S.gmap do %
If g2 * S-exists then

If not keyjs_n (S.gmap,g2) A not keyjs_in (S.hmap,(g2,?))
then remove-association (S.gmap, gl) end;

end;
end; % for

for ((gi ,hl),(g2,h2)) e S.hmap do
If g2 * S.exists then

If not keyjs-in (S.gmap,g2) A not keyjsjn (S.hmap,(g2,h2))
then remove-association (S.hmap,(g 1,h 1)) end;

end;
end; % for

end map.ceanup

3.3.5 Replica recovery

Throughout our discussion, we have been assuming that replicas do not crash to

simplify the presentation. Of course, this is unreasonable. When replicas crash, we
must concern ourselves with potential information loss. A replica must retain ali of the
Information it has stated that it has in the presence of crashes. In this section, we
discuss replica recovery and prevention of information loss.

33

:- Wk

3,,

As explained In Chapter 2, guardians can have a stable state that is stored on stable

storage. We can use stable storage to prevent information loss since once information
Is written to stable storage, it will not be lost with arbitrarily high probability [12].

However, stable storage is slow and expensive; any change made to an object causes
the entire object to be rewritten at the commit of the transaction that changed it. We
might like to minimize the amount of information kept on stable storage. At the very
least, we must keep the replica timestamp and the value of its part on stable storage. A
replica keeps the value of its part on stable storage to be able to generate new

timestamps after a crash. The replica timestamp needs to be stable so that the replica
knows what information it has gossiped to other replicas. Since the garbage collection

algorithm for the sendgossip list and the deleted set rely on replicas not losing
information after they say they have the information, a replica would have to write out its

timestamp each time it sends gossip.

The rest of the information need not be kept on stable storage provided that the

probability of a replica being able to gossip the information before it crashes is high

enough. For example, we might gossip to other replicas and wait for acknowledgments
before returning to the client. When a replica recovers from a crash, it must ask another
replica for a state. Note that this implies that replicas provide a get state operation.

This scheme is complicated. If the transaction aborts, we must be able to undo changes

at replicas that received the gossip. We lose availability and efficiency because the

update operation must wait for these acknowledgments. Crash recovery is slow since a
replica cannot recover without communicating with other replicas. There is also the
possibility of the only replica in a partition crashing and not being able to communicate
with another replica for a long period of time, effectively stopping the system in that

partition.

It is not clear that these complications are worth the trouble of avoiding storing
information on stable storage. Although stable storage is slow and expensive, its cost is

not that great. It can be argued that the writing of the replica state happens for

transactions that do not need to be particularly fast. Enter guardians operations are
done infrequently, and a guardian manager would call this operation before it had

assigned all of the guardian ids from the previous enterguardians operation. The
deleteguardian operation can be called any time after the destroying transaction

commits. Rebind operations are run as part of replacement transactions, and these
transactions do not have to be particularly fast since they are rare. It is also very
important that the service does not lose information. Therefore, we will keep the entire
replica state on stable storage.

34

A0

' n," " " "I'" ' ' "" " w ' ' ' " , " % -%" % k " %, " = %, -2"'. % '' -_% '' ',"'% "'

.K

The simplest scheme is to put the replica state as described on stable storage and

rewrite it each time it Is modified. Recovery would consist of reinitializing the volatile

variables of the replica guardian. If we want to reduce the amount of information written -*

to stable storage at the commit of an update transaction, we can use the approach

presented by Weihl and Liskov [281 for the amap type. The idea is to keep recent

changes in a log, which is written out after every update. Periodically, when the log

becomes large enough, the replica writes out the replica state with the changes from the

log and empties the log to reduce the cost of recovery. In addition, the data can be

partitioned into several sets so that only part of the state must be written for any given

operation.

3.4 Clients of the location service 0

There are three types of clients of the location service in Argus. They are the guardian

manager, the replacement system, and regular guardians.' This section explains how

these clients interact with the service, and what information each client must keep.

3.4.1 Guardian manager

The guardian manager keeps a stable timestamp reflecting all its interactions with the

location service. Whenever a guardian manager receives a new timestamp, It merges

the new timestamp with its timestamp and writes the result to stable storage.

Periodically, the guardian manager enters a set of guardian ids at the server with the

enter guardians operation. This set of entered guardian ids is kept on stable storage.

When a guardian is created, It is assigned an unused id from this set. Then the id and

the guardian manager's timestamp are given to the created guardian. The id and the

guardian manager's timestamp are recorded with the other stable information that the

guardian manager keeps about its guardians when the creating transaction commits.

If a transaction that creates a guardian aborts, the new guardian is destroyed. (This

includes replacement transactions.) In this case, the guardian manager at the created

guardian's node must inform the server of the destruction by calling the delete.guardian

operation.

There is a possible problem if the guardian manager crashes before a transaction 0

creating a guardian commits. Such a crash would cause the transaction to abort,

destroying the created guardian. The guardian manager will delete the guardian's id

from the service when it recovers, but it needs to determine which id it should delete.

35

We can handle this in several ways. One is to have the guardian manager delete all ids
except the ones belonging to guardians that are currently residing at the node. If we are
concerned with throwing away large numbers of unused guardian ids (if the guardian
manager enters hundreds of guardian ids at a time), then the guardian manager can
keep the last guardian id it assigned on stable storage and only delete the guardian ids
that do not belong to current guardians and are less than the saved id. However, this
solution is undesirable because it would cause a wait for the write to stable storage
during the creation process. A compromise between the two would be to have the
guardian manager periodically write out a "high water" mark to stable storage indicating
that all of the ids above the mark have not been assigned. Then when the guardian
manager recovers from a crash, it deletes the ids below the mark that do not belong to
current guardians. This may delete some unused guardian ids, but will not delete all of
them.

After a guardian is destroyed, the guardian manager calls delete guardian with the
destroyed guardian's id as the argument When a replacement is done, the guardian
manager is asked to destroy the replaced guardians and is given the tirnestamp of theS
rebind operation by the replacement system.

When a handler call arrives at a node, the Argus system routes it to the proper guardian.
If the called guardian is non-existent, the guardian manager returns its timestamp in a
signal to the calling guardian that indicates that the handler no longer exists. This
timestamp is guaranteed to be at least as late as the rebinding (or destruction) of that
handler.

3.4.2 Replacement system

Replacements are done by a (logically) separate replacement system, envisioned to be
along the lines of the one proposed by Bloom [I]. The replacement system keeps track
of the creation, bindings, and destruction of guardians involved in a replacement. After
the replacement guardians have been created, it calls the rebind operation to bind the
handlers of the replaced guardian(s) to the handlers of the replacement guardian(s) in
the server. The replacement system sends the timestamp returned by the the rebind

operation and the set of guardians to be destroyed to the guardian managers of the
source guardians.

36

10SL V

3.4.3 Regular guardians

Regular guardians may interact with the location service whenever they make a handler
call. Each guardian keeps a stable timestamp that is written to stable storage whenever

a transaction commits. Initially, this is its creation timestamp (the timestamp given to it
by ts guardian manager when it was created). Guardians a',o keep a cache of lookup
results. When a guardian makes a handler call, it looks for the address In Its cache first.

There are four possibilities:
1. The cache has an entry for the handler address. The call is made, and it is

successful. (The cache was up-to-date.)

2. The cache has an entry for the handler address. The call is made, but is
not successful. The timestamp returned by guardian manager at the
called node is merged into the guardian's timestamp, and a lookup request
with the new timestamp is made to the location server.

3. The cache does not have an entry. A lookup request is made with the
guardian's timestamp to the location server.

4. The cache has an entry, but there is no response from the called guardian
due to a crash or a partition. In this case, it is possible that the called
guardian may have moved, so it may be worthwhile for the calling guardian
to do a lookup request with Its own timestamp to the server. However, we
do not guarantee any useful Information since the calling guardian's
timestamp has not changed and may not be late enough.

For possibilities 2, 3 and 4, the lookup request may return a new address, which Is then

stored In the cache and used to make another call, or t may signal that the handler has

been destroyed. For possibility 4, it may also return the same address.

When a lookup is done, we must pass a timestamp at least a large as the

enter guardians timestamp for that guardian Id to the location service. We ensure this in

the following ways:
1. Guardians send their timestamps in all the messages they send.

2. When a message Is received, the message's timestamp is merged Into the
receiver's tmestamp.

3. When a transaction commits, a guardian's timestamp is written to stable 'p

storage as part of the information stored by the commit protocol.

These steps ensure that if a guardian id is sent In a message, so is a timestamp greater

than or equal to its enter timestamp, so when a lookup occurs, the replica will have (or
wait for) the correct information.

A frequent pattern of use in Argus is for the transaction that :reates a guardian to then

call one of its handlers. The current scheme would require a lookup for this handler's .r,-

37

-C '~r f 0

address even though it cannot have moved. A guardian can avoid this lookup by making
use of the fact that host names are embedded in guardian ids. It can use a handler
name like a cache. If the real cache is empty, the guardian can automatically try at the
address the handler name represents. This approach will cause an extra exchange of
messages when accessing a moved guardian for the first time after a cache reset (for
example, after a crash), but if most guardians do not move, it will speed up lookups in
general.

3.4.4 Discussion

The current Argus implementation has a two-level view of handler mapping. Regular
guardians maintain a cache that maps handler addresses to handler addresses.
Invalidating cache entries is done automatically through the use of a system error code.
When a cache entry is missing or invalidated, the guardian makes a lookup request to
the guardian manager. (As noted in Chapter 2, the guardian manz ier can "take apart"
the guardian id part of the handler address and *knows" where the host is.) This
structure was chosen for modularity so that when the location server was implemented,
it could be integrated with fewer changes to the run-time system. It was also done so
there could be another cache of information at the guardian manager that might reduce
the number of lookups to the server. It is not clear whether a reduction will occur,
however. If different guardians rarely invoke common handlers, then the lookup
requests wilt be faster if the guardian does them directly, since it is unlikely that the
guardian managers cache will be any more up-to-date.

A better caching strategy might be to have the guardian manager cache information
about rebinds. When a handler call to a non-existent handler is received, the guardian

manager returns information in its cache along with its timestamp. The meaning of this
would be: "the guardian has been replaced; here is where the guardian went when it
happened." This information would be regarded as a hint by the calling guardian, which
can decide to use it or generate a new lookup request. Since the information is only a
hint, it does not have to be stable and will be lost if the guardian manager crashes. The

big savings would be if guardians do not move often or very fast. Then the information
would most likely be correct when a handler call arrives.

Since the mechanism was already in place, we attempted to integrate the location server
into the current system with as few changes to the run-time system as possible. We
continue to have regular guardians send lookup requests to the guardian manager. The
guardian manager now does a lookup query to the server instead of taking apart the
guardian id and relays any handler destroyed signals. Otherwise, the interaction is as
described. We will ignore caches for the rest of the thesis.

38 0

The replicated nature of calls to the server is hidden in the server cluster. It provides
the interface presented. It Is used by the guardian manager and the replacement
system. The server cluster manages the policy for calling the various server replicas, -6
such as whether to call many replicas concurrently or when to timeout an operation.

3.5 Summary

In this chapter, we presented the design of a highly-available location service for Argus.
We described our choice of replication technique, Liskov's multipart timestamp
technique. The operations of the location service were defined, and we gave an
example of how the service Is used. An abstract implementation was presented for the
basic structures and algorithms. We ended the chapter with a discussion of the
Integration of the location service into the Argus system.

An implementation goal for the location service is that clients be able to make progress
as they use the service. If a client does a lookup on a handler name after getting a
non-existent handler exception, then It should get a later address than the one it has for
that handler name or a handler destroyed exception from the service. This happens in
our system because guardians and guardian managers keep track of the events they
have seen (by merging the timestamps of these events). Since the non-existent handler .. *.

exception returns a timestamp at least as late as the rebind or destruction of that

handler, a client can ask for an answer to come from a state that reflects the rebind or
destruction of the handier. Thus, the client will make progress in finding out the location
or destruction of a handler. Even If the answer to the next lookup request is not the
latest address and the call signals another non-existent handler exception, the returned
timestamp from this exception Is guaranteed to be large enough to allow the client to find
out the next step.

We made some assumptions to simplify the presentation in this chapter. We have not
talked about the interaction of the location server with the transaction system. This issue
is addressed In the next chapter. We also assumed a fixed configuration for the server.
Chapter 5 looks at reconfiguring the server state.®r

NA

39

.% ?*%

Chapter Four

Implementing the Location Service in Argus

In this chapter, we relax one of the assumptions made in Chapter 3. We allow the
possibility of replacement transactions aborting and running concurrently at the same
replica. Aborted transactions and concurrency add complexity to our location service.
Since our implementation calls the rebind operation as part of a replacement transaction,
this leads to problems for our server. Consider the following scenario (shown pictorially
in Figure 4-1):

We have a service with three replicas, although for simplicity we will assume that all
operations occur at replica 1. The current state at each of the replicas is the same and
the current timestamp is (1,1,1). Guardian ids A, B, C, and D have been entered, and
guardians A and C have been created. Part (1) of the figure shows this initial state at
replica 1.

A replacement transaction P moves A. It creates guardian B and invokes:

rebind ({(AB)), (), (1 ,0,0)) Al

The new state of replica 1 is shown in part (2) of the figure. The operation returns the
timestamp (2,1,1).

A guardian K does a lookup of (A,hl) with timestamp (0,0,0) and receives (B,hl ,(2,1,1)).

Now suppose P aborts. This means that A did not really move. The state shown in part
(2) is not correct, and guardian K got the wrong answer. We have to be able to undo the
effects of P, and should not give out information about changes made by uncommitted
transactions. So in this case, when K does the lookup the service should answer with
(A,hl ,(1,1,1)) and when P aborts, the state of replica 1 will return to part (1).

Now suppose instead that P is still in progress (neither aborted nor committed, we
indicate this in the figure by a "'), and a replacement transaction 0 moves C. It creates
guardian D and invokes:

rebind ({(C,D)), { }, (1,0,0))

The operation returns timestamp (3,1,1). Then transaction 0 commits, so its changes

are allowed to be given out. Part (3) shows this situation.

40

s%

(1). Initial situation:

A C gmap:<epy
hmap:<epy

hl hl exists: (A,3,C,D)
to: <1,1,1>

(2). Aft.: B is rebound:

A ----- > 3 C gmap: A -- >5a
hmap: <empty>

hl hi hi exists: 13,C,D)

to: <2,1,1>

(3). After C is rebound:

A ----- >3B C ----- > D gmap: A -> B*
C -- > D

hi hl hi hil hap: <emty>
exists: (a, D)
to: <3, 1,1>

Figure 4-1: Transaction scenario

A guardian G with timestamp (0,0,1) wants to call the first handler of C, so it invokes:

lookup (C,hl ,(O,O,1))
This returns (D,hl ,(3,1 ,1)) and G's timestamp becomes (3,1,1). Later, G wants to call
the first handier of A, so It Invokes:

lookup (A,hl ,(3,1 ,1))
This call should be answered since the replica's timestamp is equal to the argument
timestamp, but It cannot be answered. Since P is still in progress, its changes are not
available. We cannot answer the request with (A,hl ,(1 ,1 ,1) because if transaction P

commits, the information would come from a state that is not late enough. We cannot
answer (B,h1,(3,1,1)) because If P aborts, It would be incorrect.

The problem Is that the scenario violates the invariant that larger timestamps are
associated with more recent states. Since state changes happen at the commits of

41

transactions and the tirnestamps generated at a single replica are comparable, update
operations done at the same replica should be assigned timestamps in the order they
commit. That is, the state reflecting 0O's change should have an earlier timestamp than -

the state reflecting P 's change. Then a transaction that finds out about 0O's change will
still get a timestamp less than the state reflecting P 's change.

There are several ways to solve these problems. In this chapter, we present a complete
implementation of one of the solutions called the serial solution. Then we consider some
alternative solutions and how they address various issues. Finally, we state our
conclusions about the serial solution and compare it to the alternative solutions.

4.1 Serial solution6

To know when a transaction's changes must be undone due to an abort, the server must
interact with or be part of the transaction system. The most straightforward way for the
server to find out the outcome of a transaction is through the use of atomic objects. In
our implementation, we make the service state atomic to provide the synchronization
and recoverability needed to handle aborted transactions. .

However, making the entire service state atomic is overkill. Since an update operation W
acquires a write lock on the state, it would exclude any other operation from accessing
the state. The lock could be held for a potentially long time since it is not released until

the update transaction commits. This could delay other operations from accessing the
state. In particular, it would delay lookup operations. This would be undesirable
because lookups are expected to be done frequently. In addition, modifications to the
replica state done by other "operations" (that is, gossip processing and garbage
collection) never need to be undone, so making the entire state atomic would add
unnecessary complexity and overhead to these operations. Our implementation
separates these concerns by having update operations write an update record to an
atomic log. After the update transaction commits, a background process reads the
update record from the log and does the actual changes to the replica state. This way,
other operations can read and change the replica state while an update operation is in

progress.

Thus, we allow updates to run concurrently with other operations. However, concurrent
updates are still a problem. They can still commit "out of order." One way to solve this
problem is to restrict updates to preclude the problem. In the serial solution, we do this
by making updates serial at each replica. That is, we allow only one update operation to i
run at a replica at any given time until it commits or aborts. This means that operations .1

42

occurring at the same replica will always commit in the "correct" order since the earlier
operation must commit before the later one starts.

Now we continue our Implementation from Chapter 3, adding the components and code

necessary to handle transactions. First, we describe the new data structures In the
replica state. Then we discuss the changes In replica processing.

4.1.1 Data structures

We add the following data structures to the state:

In progress Is an atomic log. The log entries are (timestamp,update_record) pairs. The

log supports the following operations:

add_entry - proc (I:log, e:logentry)

% Adds e to the end of I.

remove~entry = proc (log) returns (logentry)

% If the log Is not empty, it removes the first entry from I and returns it.

empty - proc (l:log) returns (bool)

% Returns true if the log is empty; false if it is not.

The log is implemented by a user-defined atomic type with similar semantics to the semi-

queue type described by Weihl and Liskov [28]. This type was chosen to allow

processing of committed updates to be done concurrently while another update Is in
progress. We can add entries to the log at any time. We can remove any entry from the

log as long as the transaction that added It has committed. Aborted transactions result

in log entries that are ignored by the remove-entry procedure. The use of a built-in

atomic type would have caused removeentry operations and add-entry operations to
conflict since both modify the state of the log.

Lock Is the replica lock used to restrict updates to be serial. It is implemented by an

atomicrecord of one null object. We chose the atomicrecord data type because it

supports a testandwrite operation that allows us to test whether a process can get a

write lock and obtain the lock (if possible) in one indivisible step. A write lock blocks out

attempts by other transactions to obtain the lock and is also held until the transaction 0
finishes.

Figure 4-2 shows the state of an implemented replica.

43

% NO V 100-. %,

gmap MapOfGids;
hmap MapOfHandlers;
exists SetOfGlds;
deleted SetOfDeletedGids;
send_.gosslp SetOfUpdate_records;
gossip-table array[tlmestamp];
ts timestamp;
myindex :int;
mypart :int;
inprogress LogOfUpdaterecords;
lock :LockType

Figure 4-2: State of an implemented service replica

4.12 Replica processing

The only type of processing that changes from the previous chapter is update

processing. Gossip processing and garbage collection are exactly the same as

described. Lookups are the same except that we decided to signal unavailable ("replica

out-of-date") if the replica state is not recent enough instead of waiting. This way the

client will know right away instead of possibly timing out waiting for the answer.

We implement the update operations as handler calls to take advantage of the
transaction mechanism already in place. Recall that an action invoking a handler call

creates a subaction for the call (the call action) and the actual invocation at the remote
node runs as a subaction of the call action, so the invoking action will correctly inherit

any locks the handler call obtains. In addition, implementing update operations as

handler calls has the advantage of eliminating duplicate messages because we can

abort the unsuccessful calls to replicas by aborting the call actions. This makes the
remote action of an invocation an orphan (an action whose results are not wanted), so

the orphan detection algorithm will take care of discarding any messages to it. This also
works in the case of a crash and subsequent recovery, since the crash of the calling

guardian's node will abort any outstanding handler call, making the corresponding
remote action an orphan as well.

The handler operations of the replica guardian are called by the clients. A handler

operation tries to get the replica lock by invoking the testandwrite operation on it. If it
does not get the lock, the operation signals unavailable ("replica in use"), and the client .'

44 .

-*~- . . - *

must try somewhere else or again later. When an operation obtains the replica lock, it

creates an update record and puts It into the in progress log with the returned
timestamp. We create the returned timestamp by incrementing my .part and storing it
Into a copy of the current tirnestamp.

For the rebind operation, we also made the decision to signal unavailable ("replica out-
of-date") In the case that the replica's state is not recent enough Instead of waiting.
Since the rebind operation locks the replica, waiting could possibly tie up the client for a
long period of time and could prevent another client from making use of the replica. The
operation handlers are implemented as follows:

enterguardians - proc (gset:SetOfGids) returns (timestamp)
signals (unavailable (string))

If test and write (S.iock) then
S.my...part:- S.mypart + 1;
opts : ilmestamp :- S.ts;
optsS.myIndexj :- S.my~part;
add..entyy (S.in...pogress, (opjs, make-enter(gset)));
return (op-ts);

else
signal unavailable ('replica in use");

end; %If

end enter..guardian

deleteguardian - proc (g:guardian-id) returns (tlmnestamrp) signals (unavailable (string))

iN testiand-write (S.lock) then
S.my-part:M S.my...paf + 1;
op_ts : timestamp := S.ts;
opjts[S.myjindexi :- S.my...part;
add...entuy (S.In...roress, (o"j, make-delete (g)));
return (opjs);

signal unavailable ("replica In use");
end;

end deleteguardian (P.

45..

MMM1 *ArPrW" '*-' IL A IM MR Tk -1.W _r .. .*. -

rebind - proc (gm:MapOfGids,hm:MapOfHids,ttimestamp) returns (timestamp)

signals (unavailable (strng))

if S.ts -; t then signal unavailable ('replica not up-to-date") end;

if testand write (S.Iock) then
S.mypart :- S.mypart + 1;
opts :tinestamp :- S.ts;
op_ts[S.myindexj :- S.mry, ar;
add-entry (S.in_.progress, (op_ts, make-rebind

make-rebindentry (gm~hmn))));
return (opts);

else
signal unavailable (Preplica in use');

end; % if

end rebind

After the update transaction has committed, the log entry is available to the rest of the
replica guardian and is processed by a background process. The background process
removes entries and does the operations in the same manner as gossip processing
except that it does not have to check the timestamp of the entry and runs in a 9
transaction. (This is so we do not lose the information if an entry is removed but not
processed when a replica crashes.) Doing the actual work after a transaction commits
does mean that there is a delay from the time an operation's transaction commits to the
time the operation actually takes effect, but this delay should be small if we run the
background process frequently. If a lookup or rebind operation should happen to arrive
at the replica where the update was done but not processed and depends on it, the
replica would answer as if it had not heard about the update yet.

4.2 Alternate solutions

In this section, we consider some alternate solutions to the serial solution. The %

difference between the solutions is in when and how the update information is
processed. There are basically two kinds of solutions: those that invoke server

operations before the commit of the calling transaction (pre-commit solutions), and those
that invoke operations after the commit of the calling transaction (post-commit solutions).
The commit point of the transaction is the point at which it can no longer be aborted.

Argus uses a standard two-phase commit protocol [6]. Each transaction has a set of

guardians that are participants in the transaction. One is distinguished as the
coordinator. The protocol has two phases: the prepare phase and "he commit phase.
The protocol for a committing transaction is as follows:

46

p ~ .'~dd? .~* *AA~ ~,. , % %

RJU61AA*.nJN AA~ KnUMAIK~lu LI L:Tr K

*Prepare phase:
1. The coordinator begins by sending prepare messages to all the

participants.
2. When a participant receives a prepare message, it writes out the

new versions of changed objects to stable storage, and writes a
prepare record to stable storage. Then it sends back a prepared
message to the coordinator.

*Commit phase:
1. When the coordinator has received a prepared message from all of

its participants, it writes a commit record to stable storage. Then It
send commit messages to the participants.

2. When a participant receives a commit message, it installs any new
versions as the current versions, and writes out a committed record
to stable storage. Then it sends back a committed message to the
coordinator.

3. When the coordinator has received a committed message from all of
its participants, It writes a done record to stable storage.

The commit point of a transaction Is when the coordinator writes the commit record for
that transaction to stable storage. After this point a transaction cannot be aborted.

For each of the solutions, we will first present the solution, sketch an implementation,
and then evaluate the costs and problems of the solution. We will evaluate the costs of
the different solutions using the following criteria:

" The amount of extra storage needed.

" The amount of extra computation.

" Ease of programming the solution. Related to this is the compatibility of the
solution with the current run-time system. This Includes the extent of
changes to the existing run-time system.

" Other advantages and disadvantages.

4.2.1 Pro-commit solutions

Pre-commit solutions can be further divided into two types. An update operation can be
called during the transaction or during the prepare phase of the commit protocol. The
serial solution is a pre-commit solution of the first type. In this section, we present two
other pre-commit solutions. The first one is an extension of the serial solution to allow
concurrent updates. The second one is a solution of the second type. The update
operations are called by the coordinator as part of the prepare phase of the committ
protocol.

47 .

-~ %'

~~~~~i~~~~~~~%\~A--_~ F.,.' .5d,, f./ *C %%S, 'V 9w J % .V% % .,.



4.2.1.1 Local multipart time solution

As discussed earlier, concurrent updates cause a problem because smaller timestamps

can be assigned to operations that commit after operations with larger timestamps. The

serial solution deals with this by only running one update at a time. Another way of

dealing with the problem is to generate incomparable timestamps at a single replica.

Then it would not matter in which order the operations committed. A way of doing this is
to make the logical time at a replica also be multipart. For example, the time at a replica

could proceed: 1:1, 1:01,1:001, 1:0001, 2:1, 2:01, 3:1, 4:1, 4:01, etc. The meaning of -.+,

these times is that the operations associated with times of 2:1 and 2:01 are strictly later

than those operations with times beginning with 1, strictly earlier than the operations

associated with times beginning with 3 or more, and concurrent with each other.
S

The clock at a replica produces time of the form n:pl ..pi, where n is an integer and p, to

pi-, are 0 and pi is 1. The clock is incremented in the following manner. Suppose the

clock currently reads n:pl..pi. If there is an update operation already in progress then

the next time is n:pl..pipi+l, where p1 to pi are 0 and pi+1 is 1. If there is no update

operation in progress then the next time is (n+1):1. For example, if the clock read 3:001
when an update operation is invoked, then if another update operation is already In

progress, the next time is 3:0001. If there is no other update operation in progress, the

next time is 4:1.

We have to be able to compare and merge multipart times. We compare two multipart

times as follows: n:pl..p, is less than m:r,..rj if n < m or if n = m and pk5 < rk, k = 1 to
max(i,j) and at least one Pk is strictly less than rk. (If i j, then the shorter time is padded

with zeroes.) If neither time is less than the other, then they are incomparable. We
merge two multipart times, n:pl..pi and m:r1 ..rj, as follows. If they are comparable, the

merge is the greater of the two, for example, merge(1:1, 2:001) = 2:001. If they are
incomparable, then the merge is n:ql..qk, where qk = max(Pk,rk), k = 1 to max(i,j). For

example, merge(2:01,2:00001) = 2:01001.

This solution has extra computational overhead to determine the next timestamp and 0

storage overhead for (physically) larger timestamps. Otherwise, it would be

implemented in the same manner as the serial solution. We would get rid of the replica

lock; the in_progress log already supports concurrent updates. The major programming
effort would be in the implementation of the logical clock.

This solution suffers from potentially unbounded values if we get particularly bad

executions where many operations overlap. To make this solution practical, we would
have to assume that the system is loaded such that we will not get too many concurrent

48



operations, or set a bound on the number of concurrent operations allowed. Note that a
bound of one would make this solution exactly the same as the serial solution. S

-6
4.2.1.2 Prepare-phase solution
We can wait until the prepare-phase of the updating transaction to call the server
operations. In this scheme, we have the coordinator of the transaction calling the
appropriate operation at the same time as sending the prepare messages. The replica
Itself would be implemented as in the serial solution except that when an operation is
Invoked, the replica treats it as an operation invocation and prepare message combined.
That Is, the replica writes the new versions to stable storage directly. Then the called
replica becomes a participant in the commit phase of the protocol. The coordinator
sends back the returned timestamp to its participants as part of the commit message.
The information the coordinator needs to be able to call the appropriate operation can be
piggybacked with the system messages supporting transactions, such as handler reply
messages. The coordinator would need storage to keep track of the operation that
needed to be called, and then actually calling It. This would require reprogramming the
commit protocol.

This solution holds the replica lock only during the commit protocol. This is an
advantage if transactions are long, and many other transactions want to use the service.
It also lessens the likelihood that a transaction will abort solely because of a server
crash.Ol

4.2.2 Post-commit solutions

Invoking update operations after a transaction has committed is a natural choice. The
events that cause changes to the server have completed and will not be undone. This
eliminates the need for atomic state and eliminates the concurrent update problem since
the changes will not be undone. We can run the operations and assign the timestamps
at the same time. Another advantage is that the server would not be called if the update
transaction aborted.

The price for making the replica implementation easier is added time and complexity for
the system. Since the commit point of a transaction is after the prepare phase is
completely over, we have to wait to call the service operation at least until then, and then
wait for the service operation to return before passing on the result of the operation to
the participants of the transaction. We also have to check for duplicate messages since
there would be no way to discard them automatically. X

49

M.-ga 0 -0v -0



Post-commit solutions can also be divided into two types: those that call update
operations during the commit phase of the commit protocol and those that call
operations after the protocol has run. This section presents one of each type. The first -6

has the operations called by the coordinator as part of the commit phase. The second
has the operations called by the system after the replacement transaction has
completed.

4.2.2.1 Commit-phase solution

A straightforward commit-phase solution would be to have the operations called by the
coordinator after the commit record has been written but before sending out commit
messages. The participants can tell the coordinator what needs to be done by
piggybacking this information onto the prepared messages. The coordinator would send
the returned timestamp to the participants with the commit messages.

Uke the prepare-phase solution, the coordinator would need storage to keep track of
what operation needs to be called. In addition, the coordinator would have to keep this
information on stable storage in case it crashes after writing the commit record but
before calling the server operations. This solution also would entail reprogramming the
commit protocol.

The time cost of this solution comes in the form of a third phase waiting for the service
operations to return, making the commit prctocol longer. This solution delays the
commit of the transaction at the participants, because the coordinator cannot send the
commit messages until after the update operation returns.

4.2.2.2 Non-transaction solution

We could simply wait until after the replacement or destroying transaction has completed
to notify the server. This solution would operate in the same manner as the second

caching strategy described in Section 3.4.1 at the guardian manager. The guardian
managers at the affected nodes would have to keep information about the rebinding. If a
guardian manager receives a call to a non-existent guardian, it would first look in its own
state for the information and retumn it as part of the raised exception. If the server has
not been notified, the guardian manager would raise a different exception than one that
would be used after the server has been notified. This is because there would be no

timestamp to return since the operation has not been done yet. Regular guardians
would have to be changed to accommodate this new exception, but otherwise, would
work the same way.

so

V. V

*~~~~~~~~~~~ % % **j~- N~ . /



The difference between the caching strategy in Section 3.4.1 and this solution Is that the
Information must be kept on stable storage until the server is notified. This is needed in
case the replacement system is slow in notifying the server, so that calls to rebound
guardians are properly handled if the guardian manager crashes and recovers before
the replacement system notifies the guardian manager that the service has been told.
After the server is notified, the information can be moved into the volatile cache or
forgotten, whichever is the usual case.

4.3 Conclusions

4.3.1 Evaluation of serial solution

The serial solution means there Is always one more participant In the commit protocol for
a replacement transaction. The main advantage of the serial solution is that It is
straightforward to program. It takes advantage of the existing transaction system, and
integration into the current system is fairly simple.

The serial solution is affected by the "window of vulnerability" problem of the commit
protocol. If the coordinator of a transaction crashes after writing out the commit record
but before sending out committed messages, the replca will be unavailable for future
update operations for the duration of the crash since it will not be able to find out the
outcome of the transaction, and the unfinished transaction will still be holding the replica
lock However, lookups can still proceed and gossip can still be received and
processed, so the situation is better than if the entire replica had crashed. A replica can
also be tied up for long periods of time it a transaction is long or slow. This also
increases the chance that a transaction may have to abort solely because of a replica
crash. Concurrency for updates is limited to the number of replicas in the server, but this
may be enough.

4.3.2 Comparison to alternative solutions

If we were building the Argus run-time system from the beginning, we might be inclined
to choose the prepare-phase solution since the server really is part of the commit
procedure. The prepare-phase solution does not slow down the protocol since the
participants write new versions of stable data to stable storage at the prepare phase
anyway. It would also lessen the probability that a transaction would abort solely
because a server replica crashed. But given that Argus already exists, and the commit
protocol is complex, the prepare-phase solution is not particularly attractive because it
would require many changes to the current Argus commit protocol.

51



The multipart local time solution is conceptually the same as the serial solution. The
logical clock is more complex than the simple counter of the serial solution. This size of
the multipart times can become very large if many operations overlap. If we assume that -

operations do not overlap much, it is not clear that the multipart local time solution is
much better than the serial solution given the added complexity.

The commit-phase solution seems to be rather worthless. Although it allows us to
simplify the replica, it would really slow down the commit protocol, since it would wait for
all of the prepared messages to arrive at the coordinator, and then for the service
operations to return, before sending back the commit messages. The advantages from
the commit-phase solution are also present in the non-transaction solution, whose
disadvantages are not as severe.

In retrospect, the non-transaction solution might have been a better choice than the
serial solution. The guardian manager shoulders more of the responsibility for keeping
track of the information needed, but the guardian manager should cache some of the
information anyway for efficiency reasons. This solution is better than the commit phase
solution because it does not slow down the commit protocol. The non-transaction
solution is also in keeping with the idea of lazy propagation of information found in most
of the Argus system.

N~ N'



: .O

Chapter Five

Reconfiguration of the Server State

A configuration of the location server consists of the names and locations of the replicas

that make up the server. The previous two chapters assumed that the server had a fixed

configuration. The server was created once, and the replicas remained where they were

created. In this chapter, we explore the possibility of reconfiguring the server. That is,

we would like to be able to change the number or locations of the replicas that make up

the server. We might want to move individual replicas for the same reasons as allowing

objects to move, for example, because a node crashes too often or will be inaccessible
for a long period of time. In addition, we would like to be able to scale the service to

meet the requirements of availability and efficiency if the system changes in size. For

example, if the system doubled in size, we might want to double the number of replicas

in the server to keep the average number of queries and updates per replica roughly the

same. On the other hand, if the system shrank by half, we might want to remove half of

the replicas to avoid underutilizing resources.

Reconfiguration is done in a transaction. Either the change is completed, or the old O

configuration remains valid. We call a replica in the new configuration a current replica,

and we call a replica that was in the old configuration, but not in the new one, an

obsolete replica. The service provides three new operations to support reconfiguration:

a getstate operation to obtain the state of a replica, a createwith state operation that

creates a new replica with the state given to it as an argument, and a

change _configuration operation to install a new configuration at the called replica.
'w--

A simple scheme to do reconfiguration is as follows:

1. Start a transaction.

2. Read the states of all the replicas in the old configuration.

3. Construct the complete current state of the service. , .'.

4. Create any new replicas with the complete current state as an argument "' .'

and construct the new configuration. 1%

5. Invoke the changeconfiguration operation at the current replicas with the
new configuration as an argument.

6. Destroy the obsolete replicas.

7. Commit the transaction.
e

53

%~ 1P
o1



-~o 
%

Updae pocesingmuststo duing he econiguatio trnsationin rderto et.

Uthe pofresiong mut stod gte reconfiguration ctedtraactio i h ore tol gtoa

coee relcrreto stae Thi schembe is preuncase each teconfiguration asogdefnmt
beginingusate and edngt bpstae Af currefh replicaas stars outawih all of the
inftorkarttione rom th reius onbt ie.W ol iet ealrconfiguraton

thowsevier thscem has omaces diadvanftagepls. inp the sericenfrtheduanono

the w lo reconfigurationinbutvsinceereconfigurationtis expected toebeirar, we muabet

tolraesuc ar disruptd ino vce . Ahi grweterydisadvntaeisttee it requial of the

serreplicas theob cniuatnd ae eomuie itynhrnzto toe reconfiguration orm
v ~renscfgtion wapoldenotRbeupossiblemifosome of the l replicas wcrshd oreift

ntworen pritonfdigrtho rlicasons Oth side Wter ould, ifteet reconfiguisare,

theservie wiatthou havgt accenssrto allfterpa insr theoldeconfiguration.scin r

ncele all ow h repiaiteodconfiguration, dependng les than all ofteafetdselcsp mt
decid on th eonyreiao culymsnb.novd l f h el-rae

replics capre incldescice thi shene they comuies into lexsteone. rpia fmajrte ofd theb
replicuaint atcpt in the oldconfiguration cateurifsynchriaion fireconfiguationo

conscuarreentou reconfiguratotrnationshme Otin the oteadiecoiguateenions ae

nd suayoe aftr creofurconidton byme an Setemn administrat we couldrjus
assuemetatin the ystem admsrao Selltinsr that brifysecnfiguatin otransations aore

syncr hriedopegratyosn. Wasue othalis isd thpe sevTen iipschmsiblertoinotn
inoe an ofereplcsi.h l ofgrtodpnigo o egsih

news ofxtesost pr reconfiguration

Bciuatio to ptcpa in the reconfiguration transaction. ethe fires twr sectono

bscsce. eein setio 5.,readdrs the quesio of howth clientsaind the s cnfgrvticen,
afere eonfiguvetoreadone isltdone. we outln an coprea sveay scems forsbl find

the lcatin sevice



merge the states we receive). We call this replica the participant replica. We create any
new replicas with the state from the participant replica and construct the new
configuration. Then we invoke the changecon figuration operation at all newly-created -

replicas and the participant replica.

Replicas not participating in the reconfiguration transaction hear about the
reconfiguration through gossip. The change...con figuration operation is treated like any
other update operation, and an update record with a change entry is added to the
send...gssip list for it. When a non-participant replica encounters an update record for a
configuration change, it reconfigures itself appropriately.

It is important to note that since we do not construct a complete current state, the state
of the service stored at the current replicas may not have all of the information entered
prior to the reconfiguration transaction. This means that an obsolete replica must
continue to exist after it finds out about the reconfiguration and must send gossip to the
current replicas in order to propagate any missing information that it holds.

Thus a reconfiguration is not complete until all of the replicas in the old configuration
know about it and all of the information from the old configuration has propagated to the
new configuration. While this propagation of information is taking place, the service is in
a hybrid state between configurations. Our problem is determining how replicas must
behave during this period.

In this section, we consider how to support this reconfiguration scheme. There are four
issues to discuss:

1. How to identify replicas.

2. How to relate the states (and timestamps) from different configurations.

3. How to propagate information from the old configuration to the new
configu ration and how to determine that all of the information has
propagated.

4. How to determine when an obsolete replica can be destroyed.

In the rest of this section, we state how we will identify replicas. Then we explain the
use of version numbers to distinguish states from different configurations. Third, we .,

address the problems in gossip processing in the hybrid state. Finally, we deal with
returning to normal processing and destroying obsolete replicas.

55

.e



5.1.1 Identifying replicas

With a fixed configuration, there Is a one-to-one correspondence between a replica and ):VJ
its index into the configuration. We can ignore the actual names of the replica

guardians, since it is sufficient to know just the index of a particular replica. In effect, a

replica's index can be used as its id since they are unique. Now that we can change the

configuration of the service, this is no longer the case. The index of a replica into a

configuration and the replica at a particular index may change after a reconfiguration, so
we need another way of uniquely identifying replicas. Since a replica is also a guardian,

it has a unique guardian id assigned to it by the Argus system. We will use this id as the

replica id. A configuration is an array of replica ids. The index of a replica into a

configuration can be determined by matching the replica's id with the replica ids in the

configuration. However, it is still convenient to retain the index of a replica as part of its
state.

5.1.2 Version numbers

The second problem is how to relate states from different configurations. We would like

a state from a later configuration to have a larger timestamp than a state from an earlier
configuration. But a timestamp from a later configuration may have a different number of
parts than a timestamp from an earlier configuration. And even if timestamps from

different configurations have the same number of parts, their meanings are different
since they refer to a different set of replicas. We must be able to distinguish between

timestamps from different configurations and have some way of comparing and merging ,

them.

We solve this problem by numbering the successive configurations of the service in U
increasing order. We call this number a versionnumber and prefix it to all the

timestamps sent out by the replica. In other words, the timestamps in the server are

now (version-number, timestamp) pairs. Timestamps with higher version numbers are

later than all timestamps with lower version numbers. We redefine the timestamp

operations on these new timestamps as follows:

% , %-.

CL SnA

r;%* -

" ' '

,* ,



new_merge - proc (tsl ,ts2:newimestamp) returns (new_timestamp)

if tsl.version - ts2.version
then return ((tsl .version,merge (tsl .timestamp,ts2.timestamp))) end; -6

if tsl .version > ts2.version
then return (tsl)
else return (ts2) end;

end newmerge

newequal - proc (tsl ,ts2:new_timestamp) returns (bool)

if tsl.vesionnumber a ts2.versionnumber
then return (tsl .timestamp - ts2.tiestamp)
else return (false) end;

end new equal

newIt - proc (tsl ,ts2:newtimestamp) returns (bool)

if tsl.version number = ts2.version number 0
then return (tsl .timestamp < ts2.tirnestamp) end;

it tsl .versionnumber < ts2.versionnumber
then return (true)
else return (false) end;

end new lt

For the rest of this chapter, "timestamp" refers to this new type of timestamp. We will

call timestamps with the same version number as the current configuration current
timestamps. Timestamps with version numbers less than the version number of the
current configuration are old timestamps.

5.1.3 Gossip processing In the hybrid state

In this section, we describe how gossip processing is done in the hybrid state. Recall

that we make the simplifying assumption that all gossip from the old configuration has .

propagated to the new configuration before the next reconfiguration transaction is

begun. This is a reasonable assumption since we expect reconfigurations to be done
infrequently. In addition, we will also assume that the update entries of gossip from the

old configuration are garbage collected from a replica's send gossip list before the next
reconfiguration transaction is begun. gsltbo-e x

To support reconfiguration, a replica can have one of five statuses. We represent a
replica's current status by the state component, status. Status is a variant (a mutable

discriminated union); its type is:

, %57

0.. ..

m t l t tII t " tt" . - l * - !% " - . t•.•. - i l . . ... . . .t4. ..; ." q • " .. .." ." .. . ..." . . . . ..•" - 7 - ."." " .-"



status type = variant [normal : null,
obsolete : array[bool],
current : currentstatus,
new : null,
nogossip : null]

current-status = record [old-con configuration,
oldts timestamp,
acknowledge array[bool],
received array[boo]]

If there is no reconfiguration going on, a replica has a status of normal. Normal status is
the usual status of a server replica. It means that the replica is current and all
information from any previous configuration has propagated to it.

When a replica hears about a reconfiguration (either through the changeconfiguration
operation or through gossip) its status either changes to obsolete (if it an obsolete
replica) or to current (if it is a current replica). The obsolete status means the replica has
heard about the reconfiguration and is obsolete. A status of current means that the

replica is current and there is a reconfiguration going on. When the reconfiguration
finishes, replicas with current status change to normal status. Replicas with obsolete

status are eventually destroyed. The meaning of the field components in the obsolete
and current status cases will be explained later.

A status of new means that the replica is a newly-created replica. A replica with new
status will always change to current status when the changeconfiguration operation is
invoked at it. The meaning of the nogossip status will be explained later.

To accomplish a reconfiguration, we must propagate the news about the reconfiguration
to replicas that did not participate in the reconfiguration transaction. Current replicas will

automatically find out through normal gossip since all replicas gossip to current replicas.
Obsolete replicas that did not participate also need to be told. This is done by having
replicas with current status gossip about the reconfiguration to obsolete replicas as well
as current ones.

In addition, we must make sure that all of the information from the old configuration
propagates to the new configuration. As stated before, obsolete replicas may have
information that has not propagated to the current replicas, so they must gossip to the
replicas in the current configuration. Also, current replicas that were part of the old
configuration may have information from the old configuration that other replicas have
not heard. The timestamps associated with such information will be old. We call this
information from a previous configuration "late" gossip.

58 % %.

0
6 S



KIN,,, . . . , _ .

From a replica's point of view, a reconfiguration is finished when it has received all of the

information from the previous configuration. We use the field components in the current

status case to keep track of the Information needed to determine when this happens. -
The entire reconfiguration process is completed when all current replicas have received

all of the information from the previous configuration.

There are two problems for replicas with current status related to late gossip. The first is

determining if the late gossip contains new information. We cannot use the normal

gossip processing algorithm because the late entries will have old timestamps, while the

replica's timestamp will be current. Since all old timestamps are less than current

timestamps, gossip entries having old timestamps would be thrown away by the

receiving replica even though they may contain information that the replica does not

know about.

We solve this problem by having replicas save information about the old configuration

when they change to current status and using this information to determine whether late

gossip entries contain new information. Specifically, we save the old configuration in the

current status field component oldcon and the old timestamp in the current status field

component old ts. When a late gossip message is encountered, its timestamp is

compared to old ts. If it is less than or equal to old ts, the message is discarded. If it is
not less than or equal to old ts, the entries are processed as usual using old ts rather

than ts to determine if the entry itself is new or old information. After the message has

been processed its timestamp is merged Into oldts.

Late gossip entries can also arrive in gossip messages with current timestamps. (For .,

example, the sending replica heard the information before it heard about the

reconfiguration.) Since a replica does not know if there are any late entries in the

message, it must look at all the entries in gossip messages with current timestamps,

even if the message timestamp is less than or equal to the replica's timestamp. When a

late gossip entry is encountered, its timestamp is compared to old ts. If it is less than or

equal to oldts, the entry is discarded. If it is not less than or equal to oldts, the entry is

processed as usual and its timestamp is merged into oldts. Gossip entries with current

timestamps are processed normally.

The second problem is determining when a replica has received all of the information

from the old configuration. We note that the change entry for the reconfiguration for a

particular replica will follow all of the update entries of operations invoked before the
reconfiguration in that replica's send gossip list. If there is no garbage collection of the

send gossip list during the reconfiguration, then a replica knows it has received all of the "C'

59 'C,.



Id W W-.*C,6; ,

information about operations invoked at a replica during the previous configuration when

it encounters the change entry for that replica. The sendgossip list of the original

sending replica reflects this order and processing by other replicas will retain this order. -6

We keep track of which replicas from the old configuration have gossiped a change entry

in the current status field component received, a boolean array. The indices of received

correspond to the indexes of the replicas in the old configuration. Initially, the entries are

all false. Receivedi] is set to true when the replica encounters a change entry from

replica i of the old configuration. When a replica receives a change entry for all of the

replicas in the old configuration (received[i] is true for all i), it has heard all of the updates

with old timestamps.

The solution only works if we do not garbage collect the send gossip list of the replicas S

in the old configuration after the reconfiguration starts, since otherwise the replicas not

participating in the reconfiguration transaction can garbage collect information from their

sendLgossip lists before it is propagated to newly-created replicas. In particular, it is

important not to garbage collect the information that was not known by the participant

replica when its state was read. The new replicas created with that state will never find k.-

out the new information if it gets garbage collected. We ensure that such information is

not garbage collected in the following way:
1. The participant replica stops sending and receiving gossip and stops

garbage collecting its sendgossip list when the getstate operation is
executed.

2. Replicas with obsolete or current status stop garbage collecting their
send _gossip lists.

3. When a replica with normal status receives a gossip message with a
timestamp that has a version number greater than the replica's version -
number, it only processes a change entry (there must be one since this
replica has not heard of the reconfiguration), leaving the gossip message
on the message queue to be processed after the replica has reconfigured.

These rules effectively stop garbage collecting at replicas other than the participant

replica when the reconfiguration transaction begins. The non-participant replicas cannot

remove information before they find out that the participant replica knows about the

information. The participant replica resumes sending and receiving gossip after it

reconfigures (this is why it is included in the reconfiguration transaction). The participant

replica's gossip message will have a timestamp with a higher version number than

replicas that have not reconfigured. If a recipient of this message has not already

reconfigured, this timestamp will cause it to look for the change entry first and %

reconfigure, which stops the garbage collecting. If the recipient has already %

60

j,~ .. . . . . . . . .



reconfigured, then it has already stopped garbage collecting. We mark the participant
replica by having the geistate operation change that replica's status to no gossip.

-6
5.1.4 Returning to normal processing and destroying obsolete replicas

A replica cannot garbage collect old information until all current replicas have heard its
gossip. We can indicate the receipt of such information by having a current replica send
an acknowledged gossip message to a replica when it encounters that replica's change
entry. For a replca with current status, this means that it cannot return to normal status
until it receives an acknowledgment from all of the other current replicas. For an
obsolete replica, this means that it cannot be destroyed until it receives an
acknowledgment from all of the current replicas.

We keep track of the acknowledgments in the status field component acknowledge, an
array of boolean values. Both the obsolete status and the current status have this field
component. The entries of the array are initially set to false. When an acknowledgeL
entry from replica i of the current configuration is received, acknowledgefl is set to true.
When an obsolete replica has heard acknowledgments from all current replicas

(acknowledgefi) is true for all i), it can be destroyed. A current replica can return to
normal status when it has heard gossip from all the replicas in the old configuration and
it has heard acknowledgments from all current replicas.

A replica must hear an acknowledgment from all current replicas directly before garbage
collecting the old information because it cannot rely on a replica that has received its

* gossip to gossip the information to other replicas. This is because a replica may change
to normal status upon the receipt of the gossip and garbage collect the late entries
before sending the next round of gossip messages out.%

'a-

5.2 Abstract implementation

In this section, we continue our abstract implementation of the service. We start from
the abstract implementation of Chapter 3. We assume that all transactions commit and N

that the various processes in a replica run one at a time to completion. Recall that we
also assume that all of the gossip from the old configuration has propagated to the new
configuration before the next reconfiguration transaction is done. That is, all of the
replicas in the current configuration have normal status when a reconfiguration is

* started.

We begin our implementation with a description of the new data structures needed to ~ :

61



IF 6P wn-%- pn"ri

support reconfiguration. Then we give the code for the change configuration operation

and gossip processing. Finally, we discuss modifications to the service operations and
garbage collection algorithms. -.

5.2.1 Data structures

Recall that timestamp refers to the new type of timestamps. Ukewise, merge, equal,

and It refer to the operations newmerge, newequal, and newIt, respectively. In

addition to the status data structure Introduced in Section 5.1.3, we add the following
data structures to the state:

My id is the id of the replica. The id of a replica is assigned by the run-time system P

when a replica is created. It is available through a system primitive.

Currentconfiguration is the configuration currently in use. A configuration is an array of

replica ids that make up the server. They are ordered such that configuration[i] is the id

of the ith replica of that configuration.

The updaterecords have two additional arms:

update record = oneof [enter • SetOfGids, r
rebind : rebindentry,
delete : guardianid,
change : changeentry,
ack : null]

rebind entry struct[gm:MapOfGids, hm:MapOfHandlers]

changeentry = structnewcon:configuration, new version:int, id:replica id]

The change arm represents a change configuration operation. Besides the arguments

to the change configuration operation, the change entry also includes S.myjid of the
replica that created the entry. The ack arm represents an acknowledgment from the
sending replica.

Figure 5-1 summarizes the new replica state. My index is no longer a constant. It is the
replica's index into the current configuration and may change when a reconfiguration is
done. p.

5.2.2 Changing configurations
The reconfiguration transaction can be viewed as having two parts. The first part is

preparatory: we read a state, create the new replicas, and construct the new
configuration. In the second part, we do the actual reconfiguration by invoking the
change configuration operation at the new replicas and the participant replica.

62

N,",..



I',.,do W

gmap : MapOfGids;
hmap MapOfl-landlers;
exists SetOfGids;
deleted SetOfDeletedGids;
send-_gossip SetOfUpdatejecords;
gossipale : array[new timestamp];
ts : newtimestamp;myindex int;
my-.part :int;
status statustype
my-id replicaid;
current-configuration configuration;

C

Figure 5-1: State of a reconfigurable replica

Obtaining a replica state is done by invoking the get_state operation. The getstate
operation also causes the replica to stop sending gossip and garbage collecting 5y
changing the replica's status to no gossip. It is implemented by:

getstate = proc ( ) returns (MapOfGids,MapOfHandlers,SetOfGids,SetOfDeletedGids,
timestamp,conflguration)

change no.gossip(S.status,nil); % change status to no-gossip
return (S.gmap,S.hmap,S.exists,S.deleted,S.ts,S.currentconfiguration);

end getstate

New replicas are created with the create withstate operation. This operation takes the U

items returned by the get-state operation as arguments, creates a new server replica,
and returns the newly-created replica's id. The new replica is created with a status of .4

new and the arguments are used to initialize the corresponding parts of the new replica's
state. Myid is set using a system primitive provided by the Argus run-time system. The
rest of the replica state is left undefined. We can do this because a replica with the
status of new will never be called by a client until after it has participated in the second
part of the reconfiguration transaction, which will initialize the rest of the replica state.
The operation is implemented by the following code:

%

e]

63.
:,I



create-with-state -proc (gmfap:MapOfGlds~hmap:MapOfHandler,exists:SetOfGids,
deleted:SetOf OeletedGids,ts :tlrestamp,con configuration)

returns (replica Id)

S.status :- make new (nil);
S-gmap :- grnap;
S.hmap :- hrnap;%
Sexists :- exists;
S.deleted :- deleted;
SAtS :- ts;
S.current -configuration :- con;
% The id of a guardian is set by the run-time system when the guardian is
% created; a system primitive returns the id of the invoker.
Smy_id :. % system primitive
return (S.my-id);

end create-with-state

Change con figuration changes the configuration of a replica and saves the appropriate
information depending on whether the replica is current or obsolete. We assume that
the new configuration has a version number greater than the current one. (in a real

implementation, we would check this.) We implement the operation in the following
manner:

changeconfiguration - proc (new-configuration:configuration, new-version:int)

numn -old: mnt := number of replicas in old configuration;
num-new : int := number of replicas in new configuration; S

acknowledge : array[bool];
for i 1 ito num new do acknowledge[iJ -false end;
if Smny id E new configuration

then % a current replica
received : array[booll;
for i :- I to num-old do receivedij :- false end;
if Smny Jd e S.current-conflguration

% part of the old configuration, have heard everything from self
then received[S.myjindexj :- true end;

Smyjindex :- index of S.my Jd in new-configuration;
acknowtedge(S.myjindex] :. true % have heard from self
change-current(S.status,make current-Status(S-current configuration,

S.ts,received,acknowledge));%N.
S.ts :- (new version,(O.-O.0 , re,));
S.ts(S.rnyindexJ :- 1;
S.mypart := 1;
for i :- 1 to num new do

S.gossipjable[iJ : (new-version,(01 .
0-,numrwY end;

64 A

0%0

V . j j ... .- V .%~*~*~. . .



else % an obsolete replica
change-obsolete(S.status,acknowledge); % change status to obsolete
S.my..part :. S.mypai + 1;&
S.ts(S.myjindexJ S.my...af;

end; %if
S.current-configuration :-new-configuration;
S.send-gossip :- S.send..gossip u {(S.ts,make-change(

make changeentry(newsonfiguration,new version,S.my_id))Y);

end changeconfiguration

5.2.3 Gossip processing%

As discussed earlier, all replicas send gossip to replicas in the current configuration.
Replicas with current status also gossip to replicas in the old configuration that are6
obsolete.

Recall that a gossip message M has components gossip list, ts, and index. We now

add a component id, the id of the sending replica. We implement the gossip processing
- with the following code:

new-gossipprocessilg = proc (

tagcase S.status of
obsolete (acknowledge:array[booll) :% obsolete replica%

for u e M.gossipjist do0
tagcase u.rec of

ack:
% This will be a single entry message.
% Acks can only come from current replicas by assumption.
acknowledge[M. index] := true;

others: h

% Take M off the message queue; replica can ignore anything else; d
% this would a late gossip message.
return;

end; % tagcase
end; % for

current (c:cun'ent -status) : % current replica during reconfiguration
if M.ts !5 c.old Is then

% Take M off the message queue.
% t is possible for this message to have a change entry for an
% obsolete replica whose ack was lost; if this is so, the ack
% will be sent in the normal case when this message is sent again.
return;
end;

65a'-

tt *1

it r .



pfi~v)IrL-L,"OIq IciXr-l. V~rY\ W*l Y1 4'A -- .7 6' N- w- 7.F 7'v" 701w jvvv- it~ L

for U E M.gossipjlist do
tagcase urec of

change (chg:change -entry):
if (u.ts.version-number -< S.ts.version-number A utS -!5 cold ts) v -

(u.ts.version-number = S.ts.version-number A utS -!5 SAtS) then
% haven't heard this one yet
S.sendgossip :- S.sendgossip u f u);
if chg.id E cold-con then

% not from a newly-created replica
index: int index of chg~id in c.old con;
c.receivedindex] := true
end; % if

fu.ts.version number < S.ts.version numbert-
% old timestamp, merge with old ts
then cold ts := merge (c.old ts, u.ts) end;

end % if
% always ack change entry

aks :end {(S.ts, make-ack(nil))) to chg~id;

c.adcnowledge[M.indexi := true;
return; % do not update gossipjtable or replica timestamp

others:
if (u.ts.version number < S.ts.version number A Uts -!5 c.old ts) v

(u.ts.version number = S.ts.version number A uAtS -!5 S.ts) then
% haven't heard this one yet
S.sendgossip := S.sendgossip u (u);
% Process entries the same as regular gossip processing.
ifu.ts.version number < S.ts. version number

% old timestamp, merge with old-ts
then cold-ts := merge (c.old-ts, u.ts) end;

end; % tagcase
end; % for ~?

if (Mid E Scurrent -configuration) A I

(M.ts.version number = S.ts.version-number) then
% update gossipjable and replica timestamp if from a
% current replica that knows about the reconfiguration.
S.gossipjable[M~indexj := merge(S. gossipjable[M .index], M. ts);
S.ts :. merge (S.ts, M.ts);
end; %if

normal : % current replica and no reconfiguration
if M.ts.version-number > S.ts.version-number then

% A reconfiguration has happened. Look for a change entry.
for u E M.gossipjist do

tagcase urec of
change (chg : changeentry): i'

if chg.version > S.ts~version-number then
change configuration (chg.new con,chg.new version)
% Leave M on the message queue.
return;
end; -

others: % ignore the other entries .-

end; % tagcase
end; % for

66

:.%:. %

.- -4-.. 4--4 *~ ** j* ~%



elseif M.ts.version < S.ts.version then
% A delayed gossip message. Receiving replica will have already P
% heard the updates in this message, but the sending replica
% may not have heard an ack yet, so send one.
send {(S.ts, make ack(nil))) to M.id;

else
% Nothing unusual, process normally. Ack the change entries A ;
% (in case the previous acks got lost) and ignore the acks.

end; % if
nogossip: % ignore gossip
end; % tagcase

end newgossip_processing

5.2.4 Other replica processing

In operation processing, there is a possible problem with an operation getting a later

timestamp than another operation that happened after it in real time. For example,

suppose an enter guardians operation happens at replica in the new configuration and

gets a current timestamp, and then the deleteguardian operation for one of the

guardian ids happens at a replica that has not heard about the reconfiguration yet and

gets an old timestamp. The enter timestamp of that guardian id will be greater than the

timestamp of its deletion. This might cause the garbage collection algorithm to remove

the entry from its deleted set too soon, creating an inconsistent state.

We solve this problem by having all service operations take an extra argument, the

version number of configuration known to the client. There are three cases to consider: ,. .'

the client's version number is less than the replica's version number, the client's version

number is equal to the replica's version number, and the client's version number is

greater than the replica's version number. None of these cases apply to replicas with

new status, since they will be changed to current status before any clients find out about
them.

If the version number argument is less than the version number of the replica, the caller

has not heard about the reconfiguration, and the replica refuses to do the operation.

The operation signals an exception and returns the new configuration and version

number. This is done by all replicas regardless of status.

A client's version number may be greater than the replica's version number if the client

found out about the reconfiguration before the replica. This can cause the same

problem for enters and deletes for a client that knows about the reconfiguration and does -p.

an enter getting a current timestamp, and then does a delete at a replica that does not

know yet. The second replica would return an old timestamp. We handle this by having

67

,,,,.



a replica signal unavailable ("replica out-of-date"), if its version number is not large
enough. Note that this situation is only possible in the case of a replica with normal
status. Clients that know about the reconfiguration will not call obsolete replicas, and

such a call to a replica with current status would contradict our assumption of non-

overlapping reconfigurations.

If the version numbers are the same, then both the client and replica know about the
reconfiguration, and the operation can proceed as described before.

These tests would be implemented for all service operations in the following manner: %'%

newoperation = proc (...,v:versionnumber)
returns (...,timestamp)
signals (...,newconfiguration (configuration,int))

tagcase S.status of
obsolete :

signal new configuration(S.current configuration,S.ts.version number);
current:

if v < S.ts.versionnumber then % client has old configuration
signal newconfiguration(S.current onfiguration,S.ts.version number) end; ,

normal: ,,,,
if v < S.ts.version number then % client has old configuration

signal newconfiguration(S.current configuration,S.ts.version number) end;
if v > S.ts.versionnumber then % replica has old configuration

signal unavailable ("replica not up-to-date") end;
nogossip :

if v < S.ts.versionnumber then % client has old configuration
signal newconfiguration(S.current configuration,S.ts.version number) end;

end; % tagcase

% Do the operation. Returns S.ts.

end new operation

However, this is not enough for the rebind and lookup operations at replicas with current

status. These operations rely on information in states with timestamps less than the

argument timestamp to be present. This implies that a call with a current timestamp
argument may rely on information from the old configuration. Since we do not know
what the information is or which state it comes from, we must refuse the operation and
signal unavailable ("replica out-of-date"). A replica can do rebinds and answer queries if

the timestamp argument is old and the replica's old timestamp is large enough. (The 9.'-,;,-

timestamp argument of rebind and lookup operations may be an old one even if the

client has heard about the reconfiguration and has the current configuration and version
number.)

"-I.

68

% %%



The rebind and lookup operations need the following additional tests in the current status .,-,

case:

if t.versionnumber = S.ts.versionnumber % not all of the old gossip in yet
then signal unavailable ("replica not up-to-date") end;

if oldts -? t % definitely do not have the old gossip needed
then signal unavailable ("replica not up-to-date") end;

As stated before, garbage collection of the send gossip list is not done in a replica with

no gossip, current or obsolete status to make sure that all of the information from the old

configuration propagates to the new configuration. Garbage collection of the deleted set

cannot be done in replicas with current status for similar reasons. The current

timestamps in the gossip table may cause entries with old timestamps to be removed

from the deleted set too soon, causing an inconsistent state. Both of these procedures

would test the status of the replica before proceeding. Garbage collection of the maps is

unaffected by the reconfiguration-scheme.

5.2.5 Returning to normal processing and destroying obsolete replicas.6

When a reconfiguration is finished, two things must happen. First, the current replicas

must return to normal status. Second, obsolete replicas must be destroyed. 0

Reconfigurationcompleted is invoked periodically by replicas with current status to

check whether the replica can return to normal status. It sets S.status to normal when r-.

all the elements of received and acknowledge are true. It is implemented by the

following procedure:
reconfigurationcompleted = proc ()

tagcase S.status of
current (c:current status)

if V i, c.received[] - true A V j, c.acknowledgebJl = true
then change normal (S.status, nil) end; % change status to normal

others : return;
end; % tagcase

end reconfiguration completed

Destroy.obsolete is invoked periodically by replicas with obsolete status to check

whether the replica can be destroyed. When an acknowledgment gossip message has

been received from all current replicas, the replica is destroyed by invoking the

terminate statement. It is implemented by the following procedure:

69 .

N. N'IN



destroyobsolete - proc ()

tagcase S.status of
obsolete (acknowedge:arrayboo])

if V I, acknowledge[l] - true then terminate end;
others : return;
end; % tagcase

end destroy_obsolete

5.3 An optimization

In this section, we briefly sketch an extension to our basic reconfiguration scheme. It is

an optimization for the case where the replicas of the new configuration are a subset of

the old configuration. We call this a "benevolent" reconfiguration. Besides being a more

efficient reconfiguration procedure, this extension also gives us a way of dealing with
frequent or long-term node or network faults affecting service replicas.

Suppose that a service replica resides at a node that continually crashes or gets

partitioned from the rest of the service replicas often. We would like to replace this
replica with one on a more reliable node. We can run our basic reconfiguration scheme

and eventually it will be done, but communicating with the obsolete replica may be to
intermittent causing it to continue to accept update operations (if the change entry does

not arrive) or preventing the current replicas from changing to normal status (if the

obsolete replica's gossip does not arrive). This may continue for a long period of time.

Since most lookups have to wait for normal status, this could keep the service from

answering lookups, effectively stopping the system.

A way to avoid this situation is to do a "benevolent" reconfiguration first. The basic idea

in a benevolent reconfiguration is that if the new configuration is a subset of the old

configuration, we can continue using the same version number and the same number of

timestamp parts. This is because, in effect, we are keeping the same configuration, but

some of the replicas are permanently unavailable. Operations at the current replicas

can continue normally, so there is no disruption of service. Eventually, the obsolete

replicas find out about the reconfiguration and stop accepting updates. Wher all of the

current replicas receive a change entry for the reconfiguration from all of the obsolete
replicas, the reconfiguration is done.

Returning to the scenario posed, we would first do a benevolent reconfiguration to take
the troublesome replica out of the configuration. Then we would do a regular
reconfiguration to add the replacement replica. The first reconfiguration does not disrupt

70

S%,'



service, and the second reconfiguration should be *easier" since we got rid of the ,,

potentially troublesome replica.,, V

5.4 How clients find reconfigured services

To keep track of the reconfigurable service, a guardian manager keeps a stable copy of
the current configuration and version number in addition to its stable timestamp. As

discussed earlier, the service operations take the version number as an argument. The

following four situations are possible when a service operation is invoked:
1. The guardian managers version number is equal to the replica's version

number. The operation returns as described previously. If it returns an
unavailable signal, the guardian manager tries again later or at a different
replica.

2. The guardian manager's version number is less than the replica's version
number. The replica signals that there is a new configuration. The
guardian manager writes the new configuration and version number to
stable storage and tries the call again (at a replica in the new
configuration).

3. The guardian manager's version number is greater than the replica's
version number. The replica signals that its not up-to-date. The guardian W"
tries again later or at a different replica.

4. A signal comes back indicating that the replica is non-existent. The
guardian manager knows that the configuration has changed. It can try to
find out what the new configuration is by trying the other replicas in its
configuration. However, it is possible that all of the replicas in the
configuration the guardian manager knows about have been destroyed.

Although it is likely that guardian managers are active enough to find out about

reconfigurations as described, especially if there are common replicas in successive

configurations, it is possible that a guardian manager will not find out about a new

configuration before all of the replicas in the configuration it knows about are destroyed.
This might happen if the node of a client is down or partitioned from the rest of the .,

system for a long period of time and misses several reconfigurations. When such a 0

situation happens, we need to have some way for clients to find the service. This
section addresses this issue.

We cannot use the replacement method supported by this thesis to reconfigure the
location service. (Clearly, we cannot use the location service to find the location

service.) Other methods for allowing clients to find services that have moved fall into

four general categories:
1. Notify a name service provided by the system. '

71

U4 A N I-0



2. Require a subset of replicas to be in every configuration.

3. Have clients broadcast a request for the current configuration.

4. Chain configuration information such that a client can follow the chain to
the current configuration.

Each method has its advantages and disadvantages. One thing we would like to

consider is whether the method will perform well in the presence of failures. Making the

service highly-available and reconfigurable would not matter much if clients could not

find it.

Notifying a name service just pushes reconfigurability to another service. We have the ,:

same problem if we want to reconfigure the name service. This solution also means that-

the ability of clients to find the location service depends on the availability of the name

service. The system could have difficulty notifying the name service of the change in

location service configuration, or the clients could have difficulty finding an available
copy of the name service.

Requirng a subset of replicas to be in every configuration is feasible. Typically, we

expect that successive configurations will have many replicas in common as we add or ,I

remove replicas from the service. But if the system runs for a long time, we can imagine

that eventually all of the replicas we started with will be removed.

A real broadcast would be difficult and expensive in system with no broadcast primitives

(like Argus). We can implement a "ask your neighborn multicast like that proposed by
Henderson [7]. A logical network system defining the concept of neighbors would have

to be implemented on top of the Argus system. Such a scheme is still expensive, but if

the protocol is not run often, the cost is amortized over the life of the system.

Chaining configuration information was proposed by Herlihy for general quorum

consensus [8]. The basic idea is that obsolete configurations have pointers to the next

configuration. There is a path from any obsolete configuration to the current

configuration, and the client can follow the path. The obsolete configurations stay in

existence until all clients know about the next configuration on the chain. Chaining

seems to be a natural extension of our reconfiguration method. Adapted for the
multipart timestamp technique, chaining would only mean keeping obsolete replicas

around until all clients know about the next configuration. An obsolete replica already

contains a pointer to the new configuration, and a client already gets the next

configuration if it invokes an operation at an obsolete replica. The major problem with

this scheme is that obsolete replicas take up resources and might be around for a long

72

• .;.,.,... ,: - . : ".: ,,. .. ." :,j ," '.. "..:.. - .: - --- ;,,-,. - - , ,-.. , . - ,



time. In addition, it is not easy to determine when all possible clients have heard about
the next reconfiguration. Herlihy proposes a reference counting scheme to garbage
collect: the old configurations that we can also adapt to allow us to determine when an
obsolete replica can be destroyed, but it is fairly complex.

Either broadcasting or chaining would be suitable for our purposes. Using a name
service solves our immediate problem, but not the problem of finding reconfigurable
services in general. The fixed subset solution places a constraint on system
development: certain nodes must always exist. It may not be possible to meet such a
constraint in the long run. Nodes get old and can become non-functional despite our
best efforts.

If reconfiguration is rare and successive configurations usually have many replicas in
common, it would be very unlikely that a client would miss enough reconfigurations to
not know a replica that knows the current configuration. In this case, the amortized cost
of broadcasting would be sufficiently low to be practical. In the same situation, chaining
is expensive since we have to keep all obsolete replicas around even if only one client
has not heard about the new configuration, and even if some of the replicas it knows i

about do know about the current configuration.

On the other hand, if reconfiguration is frequent and successive configurations have few
replicas in common, it is more likely that a client could miss enough reconfigu rations to
not know a replica that knows the current configuration. Then the cost of broadcasting
may become unreasonable as more clients must broadcast to find the service. In this
case, chaining may be the better solution.

J. *,

73U

5- % ~



Chapter Six

Conclusions

This thesis described the design and construction of a location service to aid in finding
objects that move in a distributed system. Recall that object movement can be viewed in
two ways. In the "proper name" view, objects are denoted by unique identifiers that they
keep as they move from node to node. The other view is that moving an object is
replacing it with another object. That is, when we move an object we create a new
replacement object, transfer the state of the old object to the replacement object, and
then destroy the old object. The name of the old object becomes an alias for the new
object. We chose the "replacement view" of object movement for our service because it
is more general than the proper name view. The replacement view allows us to "split" or
"merge" objects without revealing the change to the entities that access those objects.
The location service records the aliasing of the old name to the new object. We call this
*binding" the old name.

Our goals for the service were to make it highly-available and efficient. In particular, if
the node at which an object resides is accessible then an entity wanting to access that
object should be able to find it with high probability. We also had an implementation 0

goal to insure that clients make progress as they make successive lookup requests of a
particular handler name; if a client already knows that a certain address for a handler
name is out-of-date, it should not receive that address as an answer to a lookup request
of that handler name. To meet our goals, we needed to replicate the service state.
Although there are many well-established replication techniques that would satisfy our
needs, we chose to implement the service using a new replication technique, Lisk'ov's
multipart timestamp technique. This technique uses multipart timestamps and gossip S

messages to maintain a consistent state. One of the reasons for choosing this
technique was to show that it was practical to use. An evaluation of the technique will be
presented later.

Each replica in the service was implemented as an Argus guardian. The thesis
presented an abstract implementation of a replica, describing the data structures and
processing algorithms of the service. The problem with concurrent updates transactions
was solved by making the replica state atomic and running the update operations at a

replica serially. The update operations were implemented as handlers of the replica
guardian to take advantage of the existing transaction system. Several other solutions

74

srS

%d* '< ~- - ,( % *,* *** ;15 . V "flop.



to the problem were also presented and compared to the implemented solution. Some

of these solutions might have been chosen under different circumstances. p

In a long running system, the configuration of the system may change; therefore we -6

might want to change the configuration of the location server as well by changing the"X

number or location of its replicas. The thesis investigated extensions to the multipart

timestamp technique to allow us to do reconfiguration.

In summary, the contributions of this thesis were:
" a location service for Argus and a basis for general object finding

" a practical application of the multipart timestamp technique

" extension of the technique to allow reconfiguration of the service state

The rest of this chapter evaluates the multipart timestamp technique as a method for

constructing highly-available services, discusses some work related to the thesis in the

area of locating objects, and suggests some areas of future work.

6.1 Evaluation of the multipart timestamp technique

One of the reasons for choosing the multipart timestamp technique as the replication

technique for the location service was to show that a practical application could be built
using the technique. Several examples of services using the technique have been

proposed (for example, orphan detection [10], garbage collection in a distributed

heap [18], and deleting old versions in a hybrid concurrency control scheme [27]), but
none have been implemented.

The information kept by these servers can be characterized by the following properties:
1. Updates are idempotent. This means that it does not matter how many

times an operation is executed because the effect is the same as if it was
only executed once.

2. Updates do not need to be totally ordered. The technique has no way of -

ordering parallel updates that happen at different replicas. To do so would -

result in the loss of the advantages this technique has over traditional
replication techniques.

3. Queries identify the updates whose effects should be reflected in the query
result. This gives a replica a local way of determining whether it has the
needed information.

4. The information states can be merged in a well-defined manner. .

The location service operations for the most part fit these properties. The only problem
L,

75

% 0r3.,'-, % .:.,,..,,-. 9 , ',.., . ,.:.i :,.,.% .% : .'; .: ,'; -- ,.',,: .:T.'- , ',-,,-,T., '.,;,*. -:. '. .,:.-' .. , .,-:.- .,,-,.'.-,:\



was with enter..guardians and rebind operations involvng the same guardian or handler.
The lookup algorithm requires that the state it reads from contain the enters for the
target guardian ids of any rebinds, sinc~e otherwise it would give the wrong information.
(Recall that a guardian id is a target if it appears in the right component of a binding.)
We satisfied this requirement by sending a timestamp known to be at least as late as the
merge of the enterguardians operation timestamps of the target guardian ids as an
argument to the rebind operation and requiring that the returned timestamp to be at least
as late. This causes the replica at which the rebind operation occurs to wait for the
information about the enter guardians operations before processing the rebind
operation. A lookup at that particular replica will have the correct state to answer a -p

request about that binding. This replica's gossip will reflect that state as well so all other
replicas will know about the enters if they know about the rebind.

In general, we would not want an update operation to have to wait for another update
operation to take effect before it could be done. In the case of the rebind operation,
however, we expect the enter guardians operations to have been done far enough in A
the past to have propagated to all replicas in a normally running system. Thus the
rebind operation should have to wait only when there are failures. An alternate strategy"AN
would be to do the rebind operation without waiting and delay the lookups until the
condition is met.

We can compare the performance of the multipart timestamp technique with other types
of replication techniques. For example, a large number of replication techniques can be
classified as voting techniques. Included in this class of techniques are the original
weighted voting scheme by Gifford [5] and its generalizations such as general quorum
consensus (8]. In the simple case of voting, the set of replicas visited by operations that
read the service state must intersect with the set of replicas that are visited by
operations that modify the service state. Voting is available in the presence of failures
as long as a client can access the correct number of replicas.

It should be noted that voting techniques can support consistency constraints that the

multipart timestamp technique cannot. For example, voting techniques can be used for
applications that require read operations to return the most recently written value. For
the location service, it is not always necessary to have the most recent state to answer a
particular lookup request since the most recent update to the state may not affect the
answer. In addition, we only require that a client be able to make progress when it
makes successive lookup requests of a particular handler name. The multipart
timestamp technique satisfies this weaker requirement.

76



We prefer the multipart timestamp technique over voting techniques for several reasons.
It is more efficient and available than voting techniques when the system is running

normally. Since with voting techniques, the set of replicas accessed by update -*

operations must intersect with the set of replicas accessed by query operations, the
availability and efficiency of update operations are inversely proportional to the
availability and efficiency of query operations. Voting techniques can make one kind of
operation as available and efficient as the multipart timestamp technique, but not both
kinds of operations. The multipart timestamp technique allows both lookups and

updates to happen at just one replica.

The multipart timestamp technique provides more availability than voting techniques in
the presence of partitions. Enter guardians and delete guardian operations can
proceed as long as one replica is accessible to the client. (Note that nothing less than
one replica per node can prevent the situation of a client being isolated from all replicas.)
Lookup requests may be delay id if the lookup requires information about an update that
was processed on the other side of the partition. This might happen if the replica that
processed the update was separated from the client and the other replicas after sending -

a response to the client, but before it communicated with other replicas. This situation is
unlikely if gossip is frequent. If we need to make it even less likely, then we can gossip
before the transaction commits. This causes some problems (such as, how to undo the
operation if the transaction aborts) and lessens the availability of update operations
(more replicas must be accessible in order to do the operations), so a choice must be 7

made in trading off complexity and availability of updates versus the acceptable
probability of being unable to process some lookup requests for some period. However,
even if we do require more than one replica to know about an update before responding
to the client, our update operations will be more available than those using voting

techniques because we will not need as many replicas to participate in the operation. A
rebind operation can also be delayed, but as argued before, it is likely that the
enterguardians operations that the rebind operation relies on will have propagated to all
replicas. 0

The multipart timestamp technique provides more availability than voting techniques in * ,..

'uP* . IIIthe presence of crashes. In voting techniques, operations become unavailable if too
many replicas crash. In our service, the only time operations become unavailable is if all
of the replicas in the server crash. We only have a problem if a particular replica
crashes before it gossips an update that it has processed. We can make that possibility

arbitrarily small by means of the same trade-offs as discussed for partitions.

The multipart timestamp technique also scales up better than voting techniques. If we

77

"-

W~,t 0 I% %

JO "Ilop 10-, "Ie. I



add more replicas to a voting technique, then at least one kind of operation will be less
available, since it will have to access more replicas to complete it. The multipart
timestamp technique maintains the same availability for each operation, regardless of -

the number of replicas.

We can also compare the multipart timestamp technique with techniques that guarantee
weaker consistency constraints. The usual reason for having weaker constraints is to '

increase availability in the presence of failures. An example of a system using such a
technique is LOCUS, the network operating system developed at UCLA [24]. LOCUS
gives direct support for replicated files to increase availability. While the system is
functioning normally, LOCUS maintains a consistent state among the copies of the file.

However, during a network partition, it allows inconsistencies in file copies to develop.-
These inconsistencies are detected and reported when the network rejoins. Any
resolution is done at the application level.

To detect inconsistencies in file versions after a partition is repaired, LOCUS uses
version vectors. A version vector is a mapping of a node to the number of times a file
has been updated at that node. Incomparable version vectors indicate version conflicts
in the various copies of the file. The version vectors are similar to the multipart
imnestamps that are used in the multipart timestamp technique. Multipart timestamps
essentially also map a replica to the number of updates done to the service state at that
replica. However, we use the multipart timestamp to prevent data inconsistencies, not -

just to detect them after the fact. We can do this because we know the meaning of the
data in the service state and can merge the information. By contrast, arbitrary files do
not have such a property. The multipart timestamp technique gives us nearty the same
amount of availability as in LOCUS (there will be few situations when an operationIV0
cannot be done), without the complexity of fixing inconsistencies.

6.2 Related work

There have been several proposed methods of finding objects that move. In this
section, we discuss three of these methods: forwarding addresses, searching, and
establishing a rendezvous. We will call an entity that is trying to access an object a user
of that object. '*

78

% % %0



6.2.1 Forwarding addresses '

Fowler [4] proposes a method based on proper names and forwarding addresses. His
model of computation is the same as ours, but his objects retain their identities when
moved. In his scheme, an object is known by a proper name that always denotes that
object. Basically, every time an object moves, it leaves a forwarding address at its
former residence. When a user wants to access an object that has moved, this chain of
forwarding addresses is followed from the last known address until the object is reached
or it can be ascertained that the object has been destroyed. To make this scheme
practical, three path compression algorithms are given to be applied to the chain of
forwarding addresses. This solution is completely decentralized; no one entity knows
where all of the objects are.

40
Fowler's solution does not tolerate failures as well as our method. If there is a failure
along an object's forwarding address chain, a user may not be able to find it. His
solution to this problem is to relate directly the availability of his algorithm for finding a

particular object to the availability of the object itself. The algorithm will guarantee to find
an object in the presence of k failures only if the object itself can tolerate k failures. That
is, it must be the case that k failures will not make all copies of an object inaccessible.
This implies that there must be at least k+1 copies of the object in the system and that k
failures cannot partition the network. The scheme is to allow each copy to move
independently, so effectively there are k+1 separate forwarding address chains that can
be followed. Since k failures cannot partition the network or break all of the forwarding
address chains, the algorithm will find the object. Note that this scheme means that
Fowler's algorithm is not fault-tolerant for non-replicated objects. Such an object would
only have one forwarding address chain and any failure along that chain could lead to
the situation where the non-replicated object is on a node accessible to the user, but the
user cannot find the object.%%

We believe that the availability of finding an object should not depend on an object's
implementation. The applications programmer should not have to replicate an object
just to accommodate being able to find the object after it moves. Our method does not
rely on an object being replicated in order to provide availability of the service. The only
time our method must delay a lookup request for a long period of time is if the
information needed is currently inaccessible due to it being on a crashed node or on the
other side of a partition from the user. As discussed before, we can make the probability
of this happening arbitrarily small.

Another advantage that our method has is that garbage collecting the information
relating to destroyed objects is easier. In both schemes, information about an object ~ 4

79

7~ .** ~*5S ~ * %* ~ *



must be kept until the object Is destroyed. However, in Fowler's scheme, the informationU
may be present at many nodes (a long-lived, frequently moved object would be sucha
case). Because the information about an object is spread out in the system, garbage -
collection in the forwarding address scheme is slow. A node must wait until an access
returns an exception for a non-existent object or it is told by another node that tried to
access the object that it has been destroyed. If no user tries to access the object, a
node may keep the information forever. (Actually, a node needs to keep forwarding
address information only until all users of the object know about the new address, but9
knowing when this condition becomes true is a difficult task.) Garbage collection in
Fowler's scheme could be done similarly to ours if the forwarding address entries also
kept backward pointers to the previous forwarding address entry. Then when an object
is destroyed the backward chain can be followed to notify the nodes where the object
used to reside that it has been destroyed. Garbage collecting in our scheme is easier
and more straightforward because of the centralization of the information.

6.2.2 Searching

Henderson [7] proposes finding objects by searching for them. Her model of
computation is the same as ours, and her method tolerates the same types of failures.
In her scheme, the information concerning object location is distributed across the
system. Each node is required to have information about the objects that are resident at
that node and may have information about objects at other nodes. The information
about objects at other nodes is not guaranteed to be up-to-date. It only reflects the
location of an object from some time in the past. If a user cannot find an object, it can
ask a node to conduct a search for the object. The node receiving the request starts by .-

asking its "neighbors," a set of nodes with which it can communicate. Two search4
methods are given. The first method is a centralized search in which the node first
asked to conduct the search does all of the querying of other nodes until it finds the
information it wants. The second method is a decentralized search in which each
queried neighbor conducts a search of its neighborhood before replying. The centralized
search is easier to control, but the decentralized search may be faster since
neighborhood searches are conducted in parallel.

The original intent of this work was to determine if the time for the search could be
traded off against storage space requirements of standard replication of the service
state. The conclusion of Henderson's thesis was that searching for objects still required .. *

nodes to remember fairly large amounts of information to prevent anomalies caused by
race conditions. The information is needed to keep searches from doing redundant
work, missing an object that has moved to a node that has already been searched, or

80 J.



resurrecting deleted objects. Although the amount of information kept may not be as

much as in a replicated state scheme, in a network of arbitrary topology the cost of the %" .

search outweighs any savings in storage space that there might be.

Note that in Chapter 5 we concluded searching might be a feasible way of finding the

location service itself after it has moved. It is still the case that searching is expensive

(although we are keeping track of only one "object," the configuration of the service, so
there is not that much information), but we expect that most clients will not need to
actually do a search to find the service so the amortized cost is low. In other words, we

would be using searching as a last effort when more reasonable strategies failed.

6.2.3 Establishing a rendezvous

Mullender and Vitanyi [22] propose to model object finding as a match-making service
that matches an object with its users2. In this model, an object posts its location at some

number of nodes and a user queries some number of nodes for that the object's

location. When a user finds a node that knows the object's location, a rendezvous has

been established. Strategies for posting and querying range from objects posting at only
one node and users doing a complete search if not all objects post to the same node (or

users querying the centralized server if all objects do post to the same node) to objects
posting at all nodes and the users just waiting for the information to arrive. Various .,

strategies for posting and searching are described in their paper [22]. In the "shotgun"

scheme, an object posts its location at a random set of nodes, and a user queries a

random set of nodes. The idea is to choose the sets such that there is a high enough J5.
probability that a rendezvous will be made. In the "hash" scheme, both sets consist of

the same nodes and are determined by a hashing function on the object's name.

It is not clear from their scheme what happens when an object wants to post at a node

that is inaccessible to that object. For the shotgun scheme, it may not matter, and the

object could just choose another node to post at until it posted at a pre-determined
minimum number of nodes, but for the hash scheme, it is important that the information

be posted at the particular node. If they expect to do a write-all update, then this , -,.

scheme is clearly not as available as our method. The authors also do not address what
happens if a user gets an out-of-date address. This could happen in the shotgun,,

scheme since the nodes are chosen at random for both posting and querying. In the •

hash scheme, this could happen if they do not use a write-all update. In addition, they

21n their system, the objects that move are processes called servers, and the entities that look for them
are called clients of these processes.

81



do not discuss whether a user is guaranteed to make progress if it queries again after
getting an out-of-date address. There is a trade-off between the efficiency and

availability of lookups versus the efficiency and availability of updates in this scheme. -6
Posting at more nodes would mean that updates are less efficient, but that lookups are
more available and In the case of the shotgun scheme, more efficient since it is more

likely that a rendezvous will be established earlier. Posting at fewer nodes has the
opposite effect.

The hash scheme is considered to be more efficient, but not as available as the shotgun
scheme. The hash scheme is more efficient because the nodes to post and query are

known ahead of time, so there is greater likelihood of establishing a rendezvous.
However, this also means that if all of the specific nodes go down at the same time,

there will be no way to locate the object in question. The authors also point out that the
hash function would have to be reprogrammed in order to take any new nodes into
consideration as rendezvous nodes if we want to keep the load approximately balanced.

It should be noted that our method can be described by this model. In our method, all

objects (eventually) "post" at a fixed set of nodes. This set is also known by all users ,

and can be queried by them. In effect, this makes these nodes "rendezvous" servers.
We pick a particular posting strategy that is described by the multipart timestamp .

technique. We also specify what happens when clients receive out-of-date addresses

and guarantee progress toward finding the .urrent address. .

6.3 Future work

An immediate area of future research that suggests itself is being able to provide a

binding mechanism for handlers of different types. For example, we might like to replace

a handler with one that takes more or fewer arguments or one that has arguments of a
different type. The interesting part of this problem would be how to keep the information % %

that tells how to match the original arguments to the arguments of the actual call. That
is, instead of just keeping the path to the current location, each edge can also have a .'6.

transformation function that is applied to the arguments of the call to the previous

address to give the arguments for the call to the next address on the chain.
.t'.

Another area of interest is to implement a server using the alternate strategy of delaying

the answering of queries if the query needs to have certain types of information instead
of delaying the update operations. This would probably not be a feasible idea for the
location service since lookups are expected to be much more frequent than rebinds, but

for services where the updates are expected to be more frequent, this might be a better
way of solving ordering problems.

82

Z a



third area of research is to find ways of reducing the size of the send .gssip list. For
example, we could gossip only the update records of operations invoked at the particular
replica. This would require changes in the gossip processing algorithm because the
gossip messages no longer satisfy the prefix property that all operations included in the
state associated with a sender's timestamp are included in its gossip or are known to
have propagated to the receiver. We can no longer just merge the gossip message's
timestamp into the replica's timestamp since the replica may not know all of the
operations known by the sender. More importantly, if we do not send all known
operations in gossip messages, our ability to process updates like the rebind operation
that rely on the effects of other operations already being present Is affected. The updater.
record would have to record this dependency, and the gossip processor might have to
wait for the needed operation(s) to arrive.

Another area of interest is to extend the reconfiguration scheme to allow reconfigu rations
that overlap. By overlap, we do not mean that reconfiguration transactions run
concurrently, but that a reconfiguration transaction will be allowed to proceed even If the
previous reconfiguration has not finished (that is, all of the information from the first
configuration has not necessarily propagated to the second configuratilon). The difficult
part of this extension Is what to do if the change configuration information from the
second transaction arrives at a non-participant replica before the change configuration
information from first transaction.

A final area of future work is optimizing the gossip sending algorithm. The described
algorithm has a worst-case performance of sending 0(n2) messages, where n Is the
number of replicas. For small n, this may be tolerable, but if we have a very large
system, n may be fairly large as well. For large n, we might use a hierarchical scheme
where replicas gossip to a small group of replicas and only a few replicas from each
group gossip to other groups. Another way to reduce the number of messages sent Is to
have replicas send acknowledgments of receipt.

83 A



References

-6
(1] Bloom, T.

Dynamic Module Replacement in a Distributed Programming System.
Technical Report MIT/LCS/TR-303, MIT Laboratory for Computer Science,

Cambridge, MA, March, 1983.

[2] Eswaran, K., et al.
The Notion of Consistency and Predicate Locks in a Database System.
Communications of the ACM 19(11 ):624-633, November, 1976.

[3] Fischer, M. and Michael, A.
Sacrificing Serializability to Attain High Availability of Data in an Unreliable

Network.
In Proceedings of the Symposium on Principles of Database Systems, Los

Angeles, California. ACM, March, 1982.

(4] Fowler, R.
Decentralized Object Finding Using Forward Addresses.
Technical Report 85-12-1, University of Washington, Department of Computer 9.

Science, Seattle, WA, December, 1985.

[5] Gifford, D.
Weighted Voting for Replicated Data.
In Proceedings of the 7th Symposium on Operating System Principles, Pacific

Grove, Califomia. ACM, December, 1979.

[6] Gray, J.
Notes on Database Operating Systems.
Lecture Notes in Computer Science. Vol. 60: Operating Systems, An Advanced ,

Course. db,

Springer-Verlag, New York, 1978, pages 393-481.

[7] Henderson, C.
Locating Migratory Objects in an Internet.
Master's thesis, Massachusetts Institute of Technology, Cambridge, MA, August,

1982.
Available as Computation Structures Group Memo 224, MIT Laboratory for

Computer Science.

[8] Herlihy, M. , *

Replication Methods for Abstract Data Types.
Technical Report MIT/LCS/TR-319, MIT Laboratory for Computer Science, -

Cambridge, MA, May, 1984.

[9] Herlihy, M. and Liskov, B.
A Value Transmission Method for Abstract Data Types.
ACM Transactions on Programming Languages and Systems 4(4):527-551, ,

October, 1982.

84



[10] Ladin, R., Uskov, B., and Shrira, L.
A Technique for Constructing Highly-Available Distributed Services.
MIT Laboratory for Computer Science, Cambridge, MA.
June, 1987
Submitted for publication.

[11] Lamport, L.
Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM 21(7):558-565, July, 1978.

[12] Lampson, Butler W. and Sturgis, Howard E.
Atomic Transactions.
Lecture Notes in Computer Science. Vol. 105: Distributed Systems--

Architecture and Implementation.
Springer-Verlag, New York, 1981, pages 246-265.
This is a revised version of Lampson and Sturgis's unpublished paper, "Crash

Recovery in a Distributed Data Storage System".

[13] Uskov, B.
Overview of the Argus Language and System.
Programming Methodology Group Memo 40, MIT Laboratory for Computer

Science, Cambridge, MA.
February, 1984

[14] Liskov, B., et al.
Abstraction Mechanisms in CLU.
Communications of the ACM 20(8), August, 1977.

[15] Uskov, B., etal.
Lecture Notes in Computer Science. Vol. 114: CLU Reference Manual.
Springer-Verlag, New York, 1981.

[16] Uskov, B., etal.
Argus Reference Manual.
Programming Methodology Group Memo 54, MIT Laboratory for Computer

Science, Cambridge, MA.
March, 1987

[17] Uskov, B. and Guttag, J. -'5-.,

Abstraction and Specification in Program Development.
MIT Press, Cambridge, MA, 1986.

[18] Uskov, B. and Ladin, R.
Highly-Available Distributed Services and Fault Tolerant Distributed Garbage

Collection.
In Proceedings of the 5th Symposium on Principles of Distributed Computing,

Calgary, Alberta, Canada. ACM, August, 1986.

[19] Uskov, B. and Scheifler, R.
Guardians and Actions: Linguistic Support for Robust, Distributed Programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July,

1983.

85 .,



[201 Marzuilo, K.
Loosely-coupled Distributed Services: a Distributed Time Service.
PhD thesis, Stanford University, Stanford, CA, 1983.

[211 Moss, J. -_

Nested Transactions: An Approach to Reliable Distributed Computing.
Technical Report MIT/LCS/TR-260, MIT Laboratory for Computer Science,

Cambridge, MA, April, 1981.

[22] Mullender, S. and Vitanyl, P.
Distributed Match-Making for Processes in Computer Networks - Preliminary

Version.
In Proceedings of the 4th Symposium on Principles of Distributed Computing,

Minaki, Ontario, Canada. ACM, August, 1985.

(23] Oki, B. .
Reliable Object Storage to Support Atomic Actions. •
Technical Report MIT/LCS/TR-308, MIT Laboratory for Computer Science,

Cambridge, MA, May, 1983.

[24] Parker, Jr., D., et al.
Detection of Mutual Inconsistency in Distributed Systems.
IEEE Transactions on Software Engineering SE-9(3):240-247, May, 1983.

(25] Schlichtlng, R. and Schneider, F.
Fail-Stop Processors: An Approach to Designing Fault-Tolerant Computing

Systems.
ACM Transactions on Computer Systems 1 (3):222-238, August, 1983.

[26] Walker, E.
Orphan Detection in the Argus System.
Technical Report MIT/LCS/TR-326, MIT Laboratory for Computer Science,

Cambridge, MA, June, 1984.

[27] Weihl, W.
Distributed Version Management for Read-only Actions.
IEEE Transactions on Software Engineering, Special Issue on Distributed

Systems SE-1 3(1 ):55-64, January, 1987.

(28] Weihl, W. and Lskov, B.
Implementation of Resilient, Atomic Data Types.
ACM Transactions on Programming Languages and Systems 7(2):244-269, •

April, 1985. -

[291 Wuu, G. and Bernstein, A. 0,
Efficient Solutions to the Replicated Log and Dictionary Problems. %
In Proceedings of the 3rd Symposium on Principles of Distributed Computing, r

Vancouver, British Columbia, Canada. ACM, August, 1984.

'V.
86

ffla.



OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency

1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies 0
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies

Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies

Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies

Office of Computing Activities

1800 G. Street, N.W.
Washington, DC 20550

Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy

Head, Research Department

Naval Weapons Center -'_

China Lake, CA 93555

:... * ..,

late

ir or

%0
%*..



wCb

/7oM
7/cD

f/ * m



wcb


